Not correct generalized SPLIT_N_X_N due to imageWithoutPrnuNpArrayTile
				
					
				
			This commit is contained in:
		| @@ -25,7 +25,7 @@ datasetPath = 'no_noise_images' | ||||
| # In addition to the range difference, note that the distribution in the first set of images was a Gaussian and here is very different and specific. | ||||
| PRNU_FACTOR = 0.01 | ||||
| NOISE_FACTOR = 0.1 | ||||
| SPLIT_N_X_N = 1 | ||||
| SPLIT_N_X_N = 4 | ||||
|  | ||||
| IMAGE_SIZE_SHAPE = [dimension // SPLIT_N_X_N for dimension in (704, 469)] | ||||
|  | ||||
| @@ -33,7 +33,6 @@ np.random.seed(0) | ||||
|  | ||||
| #prnuNpArray = 255 * randomGaussianImage(scale = PRNU_FACTOR, size = IMAGE_SIZE_SHAPE) | ||||
| prnuNpArray = getPrnuShownAsSuch(IMAGE_SIZE_SHAPE) * PRNU_FACTOR | ||||
| showImageWithMatplotlib(prnuNpArray) | ||||
|  | ||||
| def isIn256Range(x): | ||||
|     return 0 <= x and x <= 255 | ||||
| @@ -46,11 +45,14 @@ for imageName in os.listdir(datasetPath): | ||||
|         imageWithoutPrnuPil = Image.open(imagePath).convert('F') | ||||
|         imageWithoutPrnuNpArray = np.array(imageWithoutPrnuPil) | ||||
|  | ||||
|         m = imageWithoutPrnuNpArray.shape[0] // SPLIT_N_X_N | ||||
|         n = imageWithoutPrnuNpArray.shape[1] // SPLIT_N_X_N | ||||
|         m = IMAGE_SIZE_SHAPE[1] | ||||
|         n = IMAGE_SIZE_SHAPE[0] | ||||
|  | ||||
|         imageWithoutPrnuNpArrayTiles = [imageWithoutPrnuNpArray[x : x + m, y : y + n] for x in range(0, imageWithoutPrnuNpArray.shape[0], m) for y in range(0, imageWithoutPrnuNpArray.shape[1], n)] | ||||
|         for imageWithoutPrnuNpArrayTile in imageWithoutPrnuNpArrayTiles: | ||||
|             #print(imageWithoutPrnuNpArrayTile.shape, tuple(IMAGE_SIZE_SHAPE[::-1])) | ||||
|             #if imageWithoutPrnuNpArrayTile.shape != tuple(IMAGE_SIZE_SHAPE[::-1]): | ||||
|             #    continue | ||||
|             imageNoise = randomGaussianImage(scale = 255 * NOISE_FACTOR, size = imageWithoutPrnuNpArrayTile.shape) | ||||
|             imageWithPrnuNpArray = imageWithoutPrnuNpArrayTile + prnuNpArray + imageNoise | ||||
|             #assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image' | ||||
|   | ||||
		Reference in New Issue
	
	Block a user