Small changes
This commit is contained in:
parent
4eb8841ebf
commit
7f7e78cafb
@ -1,6 +1,6 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from utils import getColorChannel, Color
|
||||
from utils import getColorChannel, Color, isARawImage
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
@ -32,7 +32,7 @@ def getNumpyFilePath(imageFilePath, color):
|
||||
for camera in tqdm(IMAGES_CAMERAS_FOLDER, 'Camera'):
|
||||
imagesCameraFolder = IMAGES_CAMERAS_FOLDER[camera]
|
||||
for file in tqdm(os.listdir(imagesCameraFolder), 'Image'):
|
||||
if file.endswith('.NEF') or file.endswith('.ARW'):
|
||||
if isARawImage(file):
|
||||
#print(file)
|
||||
imageFilePath = f'{imagesCameraFolder}/{file}'
|
||||
for color in Color:
|
||||
|
@ -15,21 +15,21 @@ def getImageFilePath(imageIndex):
|
||||
|
||||
def getImageColorChannel(imageIndex, color):
|
||||
imageFilePath = getImageFilePath(imageIndex)
|
||||
return getColorChannel(imageFilePath, color).astype(np.int32)
|
||||
return getColorChannel(imageFilePath, color)
|
||||
|
||||
def crop(image, interestingPosition, yRange, xRange):
|
||||
return image[interestingPosition[0] - yRange: interestingPosition[0] + yRange, interestingPosition[1] - xRange: interestingPosition[1] + xRange]
|
||||
|
||||
# Could leverage crop already here.
|
||||
colorChannels = [getImageColorChannel(imageIndex, COLOR) for imageIndex in tqdm(IMAGE_INDEX_RANGE)]
|
||||
colorChannels = [crop(getImageColorChannel(imageIndex, COLOR), INTERESTING_POSITION, Y_RANGE, X_RANGE).astype(np.int32) for imageIndex in tqdm(IMAGE_INDEX_RANGE)]
|
||||
meanColorChannels = np.mean(colorChannels, axis = 0)
|
||||
estimatedPrnus = [colorChannel - meanColorChannels for colorChannel in tqdm(colorChannels)]
|
||||
estimatedPrnu = np.mean(estimatedPrnus, axis = 0)
|
||||
print(estimatedPrnu.shape)
|
||||
|
||||
def crop(image, interestingPosition, yRange, xRange):
|
||||
return image[interestingPosition[0] - yRange: interestingPosition[0] + yRange, interestingPosition[1] - xRange: interestingPosition[1] + xRange]
|
||||
|
||||
#colorChannel = crop(multipleColorsImage, ORIGINAL_INTERESTING_POSITION, Y_RANGE, X_RANGE)
|
||||
colorChannelToDisplay = estimatedPrnu
|
||||
colorChannelToDisplay = crop(colorChannelToDisplay, INTERESTING_POSITION, Y_RANGE, X_RANGE)
|
||||
#colorChannelToDisplay = crop(colorChannelToDisplay, INTERESTING_POSITION, Y_RANGE, X_RANGE)
|
||||
print(colorChannelToDisplay.shape)
|
||||
plt.imshow(colorChannelToDisplay)
|
||||
plt.show()
|
@ -2,6 +2,8 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from tqdm import tqdm
|
||||
|
||||
# TODO: seems to avoid some intermediary values resulting in visible circles
|
||||
|
||||
A = -1.076923838846692e-06
|
||||
B = 0.0010539307456559996
|
||||
C = 42
|
||||
@ -30,6 +32,9 @@ def checkOriginalPoint(point):
|
||||
for point in [CENTER, [0, 0], [CENTER[0], int(CENTER[1] + getDistance(0, 0) / 2)]]:
|
||||
checkOriginalPoint(point)
|
||||
|
||||
pad = (SHAPE[1] - SHAPE[0]) // 2
|
||||
cropImage = image[:, pad:-pad]
|
||||
|
||||
#plt.imshow(image, cmap = 'grey')
|
||||
plt.imsave('vignetting.png', image * 2.55, cmap = 'grey', vmin = 0, vmax = 255)
|
||||
plt.show()
|
@ -3,13 +3,15 @@ import numpy as np
|
||||
from scipy import fftpack
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
image = np.array(Image.open('circle.png').convert('L'))# / 255
|
||||
IMAGE_FILE_NAME = 'manual_tests/horizontal_ellipse'
|
||||
image = np.array(Image.open(f'{IMAGE_FILE_NAME}.png').convert('L'))# / 255
|
||||
|
||||
# fft of image
|
||||
fft1 = fftpack.fftshift(fftpack.fft2(image))
|
||||
|
||||
# save the image
|
||||
#toDisplay = np.angle(fft1)
|
||||
toDisplay = np.log10(1 + abs(fft1))
|
||||
plt.imshow(toDisplay)
|
||||
plt.show()
|
||||
plt.imsave('ifft1.png', toDisplay)
|
||||
#plt.imsave(f'{IMAGE_FILE_NAME}_fft.png', toDisplay)
|
@ -1,6 +1,7 @@
|
||||
import os
|
||||
from utils import getColorChannel, Color, mergeSingleColorChannelImagesAccordingToBayerFilter
|
||||
from utils import getColorChannel, Color, mergeSingleColorChannelImagesAccordingToBayerFilter, isARawImage
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
|
||||
folder = 'flat-field/NEF'
|
||||
|
||||
@ -24,7 +25,9 @@ lastCorrelation = None
|
||||
highestCorrelation = None
|
||||
highestCorrelationFile = None
|
||||
|
||||
for file in tqdm(sorted(os.listdir(folder)), 'File'):
|
||||
files = [file for file in sorted(os.listdir(folder)) if isARawImage(file)]
|
||||
|
||||
for file in tqdm(files, 'File'):
|
||||
colorChannels = {}
|
||||
for color in Color:
|
||||
colorChannel = getColorChannel(f'{folder}/{file}', color)
|
||||
@ -35,7 +38,8 @@ for file in tqdm(sorted(os.listdir(folder)), 'File'):
|
||||
correlation = corr(mergedSingleColorChannelImage, lastMergedSingleColorChannelImage)
|
||||
if highestCorrelation is None or correlation > highestCorrelation:
|
||||
highestCorrelation = correlation
|
||||
highestCorrelationFile = file
|
||||
|
||||
lastMergedSingleColorChannelImage = mergedSingleColorChannelImage
|
||||
|
||||
print(f'{highestCorrelationFile=} (and previous file) have a correlation of {highestCorrelation}')
|
||||
print(f'{highestCorrelationFile} (and previous file) have the highest correlation with a correlation of {highestCorrelation}')
|
@ -148,7 +148,7 @@ def isARawImage(imageFilePath):
|
||||
def getColorChannel(imageFilePath, color):
|
||||
if isARawImage(imageFilePath):
|
||||
numpyFilePath = f'{imageFilePath}.{color}.npy'
|
||||
if False and os.path.isfile(numpyFilePath):
|
||||
if os.path.isfile(numpyFilePath):
|
||||
imageNpArray = np.load(numpyFilePath)
|
||||
else:
|
||||
with rawpy.imread(imageFilePath) as raw:
|
||||
|
Loading…
x
Reference in New Issue
Block a user