WIP: Getting PRNU by averaging on fake dataset
This commit is contained in:
@@ -19,11 +19,11 @@ def contextAdaptiveInterpolator(I, IImage, showProgress = False):
|
||||
# Accelerate computation. See #15.
|
||||
for m in range(1, IImage.size[0] - 1):
|
||||
for n in range(1, IImage.size[1] - 1):
|
||||
e = I[m, n + 1]
|
||||
e = I[m , n + 1]
|
||||
se = I[m + 1, n + 1]
|
||||
s = I[m + 1, n]
|
||||
s = I[m + 1, n]
|
||||
sw = I[m + 1, n - 1]
|
||||
w = I[m, n - 1]
|
||||
w = I[m , n - 1]
|
||||
nw = I[m - 1, n - 1]
|
||||
no = I[m - 1, n]
|
||||
ne = I[m - 1, n + 1]
|
||||
|
@@ -5,7 +5,6 @@ def wienerFilter(r, rImage, Q, sigma_0, showProgress):
|
||||
h_wImage = Image.new('L', (rImage.size[0], rImage.size[1]))
|
||||
h_wImagePixels = h_wImage.load()
|
||||
|
||||
# Wiener filter.
|
||||
def h_w(hImage, h, i, j):
|
||||
# Equation (7)
|
||||
return h[i, j] * sigma(hImage, h, i, j) / (sigma(hImage, h, i, j) + sigma_0 ** 2)
|
||||
|
Reference in New Issue
Block a user