WIP: Getting PRNU by averaging on fake dataset

This commit is contained in:
2024-03-25 17:45:01 +01:00
parent 72e37a252a
commit 8575da5b1d
3 changed files with 22 additions and 18 deletions

View File

@@ -19,11 +19,11 @@ def contextAdaptiveInterpolator(I, IImage, showProgress = False):
# Accelerate computation. See #15.
for m in range(1, IImage.size[0] - 1):
for n in range(1, IImage.size[1] - 1):
e = I[m, n + 1]
e = I[m , n + 1]
se = I[m + 1, n + 1]
s = I[m + 1, n]
s = I[m + 1, n]
sw = I[m + 1, n - 1]
w = I[m, n - 1]
w = I[m , n - 1]
nw = I[m - 1, n - 1]
no = I[m - 1, n]
ne = I[m - 1, n + 1]

View File

@@ -5,7 +5,6 @@ def wienerFilter(r, rImage, Q, sigma_0, showProgress):
h_wImage = Image.new('L', (rImage.size[0], rImage.size[1]))
h_wImagePixels = h_wImage.load()
# Wiener filter.
def h_w(hImage, h, i, j):
# Equation (7)
return h[i, j] * sigma(hImage, h, i, j) / (sigma(hImage, h, i, j) + sigma_0 ** 2)