diff --git a/datasets/raise/extract_noise.py b/datasets/raise/extract_noise.py index c8d4be1..2b20582 100755 --- a/datasets/raise/extract_noise.py +++ b/datasets/raise/extract_noise.py @@ -7,28 +7,43 @@ from PIL import Image import os from tqdm import tqdm from multiprocessing import Pool +from threading import Lock -imagesFolderPath = 'tif' +imagesFolderPath = 'flat-field' +npArrayFilePath = 'mean.npy' -''' -for imageFileName in tqdm(os.listdir(imagesFolderPath)): - npArrayFilePath = f'mean.npy' - if os.path.isfile(npArrayFilePath): - continue +mutex = Lock() +mean = None#np.zeros((3264, 4928, 3)) +numberOfImagesInMean = 0 + +imagesFileNames = os.listdir(imagesFolderPath) + +pbar = tqdm(total = len(imagesFileNames)) + +def treatImage(imageFileName): + global mean, numberOfImagesInMean, pbar imageFilePath = f'{imagesFolderPath}/{imageFileName}' imagePil = Image.open(imageFilePath) imageNpArray = img_as_float(np.array(imagePil)) + print('Before mean computation') imageNoiseNpArray = imageNpArray - denoise_tv_chambolle(imageNpArray, weight=0.2, channel_axis=-1) - with open(npArrayFilePath, 'wb') as f: - np.save(f, imageNoiseNpArray) -''' + print('After mean computation') + with mutex: + print('Start mutex section') + if mean is None: + print('Inter A') + mean = imageNoiseNpArray + else: + print('Inter B') + mean = ((mean * numberOfImagesInMean) + imageNoiseNpArray) / (numberOfImagesInMean + 1) + print('Intermediary 0') + numberOfImagesInMean += 1 + print('Intermediary 1') + pbar.update(numberOfImagesInMean) + print('End mutex section') -import time +with Pool(5) as p: + p.map(treatImage, imagesFileNames) -def treatImage(imageFilePath): - while True: - print(imageFilePath) - time.sleep(1) - -with Pool(22) as p: - p.map(treatImage, ) +with open(npArrayFilePath, 'wb') as f: + np.save(f, mean)