Compare commits
2 Commits
2baf9c3000
...
f181a3498c
Author | SHA1 | Date | |
---|---|---|---|
f181a3498c | |||
03f52a5bd1 |
@ -14,7 +14,7 @@ from tqdm import tqdm
|
||||
|
||||
IMAGE_SIZE = 64
|
||||
NUMBER_OF_PHONES = 1#0
|
||||
NUMBER_OF_IMAGES_PER_PHONE = 100
|
||||
NUMBER_OF_IMAGES_PER_PHONE = 10_000
|
||||
# Compared to images being 1.
|
||||
PRNU_FACTOR = 0.1
|
||||
|
||||
@ -43,26 +43,32 @@ def showImageWithMatplotlib(npArray):
|
||||
plt.imshow(npArray)
|
||||
plt.show()
|
||||
|
||||
fig, axs = plt.subplots(1, 4)
|
||||
NUMBER_OF_ROWS = 5
|
||||
NUMBER_OF_COLUMNS = 3
|
||||
fig, axes = plt.subplots(NUMBER_OF_ROWS, NUMBER_OF_COLUMNS)
|
||||
fig.suptitle('Single PRNU estimation with images being Gaussian noise')
|
||||
|
||||
prnusPil = [toPilImage(prnu) for prnu in prnus]
|
||||
#showImageWithMatplotlib(prnus[0])
|
||||
axs[0].set_title('Actual PRNU')
|
||||
axs[0].imshow(prnus[0])
|
||||
MAIN_AXIS_ROW_INDEX = 1
|
||||
mainAxis = axes[MAIN_AXIS_ROW_INDEX]
|
||||
mainAxis[0].set_title('Actual PRNU')
|
||||
mainAxis[0].imshow(prnus[0])
|
||||
|
||||
axs[1].set_title('Image without PRNU')
|
||||
axs[1].imshow(imagesWithPrnu[0][0])
|
||||
mainAxis[1].set_title('First image without PRNU')
|
||||
mainAxis[1].imshow(imagesWithoutPrnu[0][0])
|
||||
|
||||
imagesWithPrnuPil = [[toPilImage(imageWithPrnu) for imageWithPrnu in imagesWithPrnu[phoneIndex]] for phoneIndex in range(NUMBER_OF_PHONES)]
|
||||
#showImageWithMatplotlib(imagesWithPrnu[0][0])
|
||||
axs[2].set_title(f'First image with PRNU\nRMS with image without PRNU: {round(rmsDiffNumpy(imagesWithPrnu[0][0], imagesWithoutPrnu[0][0]), 4)}')
|
||||
axs[2].imshow(imagesWithPrnu[0][0])
|
||||
assert NUMBER_OF_IMAGES_PER_PHONE >= 10 ** (NUMBER_OF_ROWS - 1), 'Try to use more images than generated!'
|
||||
|
||||
imagesWithPrnuPil0Mean = np.array(imagesWithPrnuPil[0]).mean(axis = 0)
|
||||
#showImageWithMatplotlib(imagesWithPrnuPil0Mean)
|
||||
axs[3].set_title(f'Mean of images with PRNU\ni.e. estimated PRNU\nRMS with actual PRNU: {round(rmsDiffNumpy(imagesWithPrnuPil0Mean, prnus[0]), 4)}')
|
||||
axs[3].imshow(imagesWithPrnuPil0Mean)
|
||||
for rowIndex, numberOfImages in enumerate([10 ** power for power in range(NUMBER_OF_ROWS)]):
|
||||
imagesWithPrnuPil0Mean = np.array(imagesWithPrnu[0][:numberOfImages]).mean(axis = 0)
|
||||
title = (f'Mean of first $N$ images with PRNU\ni.e. estimated PRNU\nRMS with actual PRNU\n\n' if rowIndex == 0 else '') + f'$N$ = {numberOfImages:,}, $RMS$ = {round(rmsDiffNumpy(imagesWithPrnuPil0Mean, prnus[0]), 4)}'
|
||||
axes[rowIndex][2].set_title(title)
|
||||
axes[rowIndex][2].imshow(imagesWithPrnuPil0Mean)
|
||||
|
||||
for columnIndex in range(NUMBER_OF_COLUMNS):
|
||||
for axisIndex in range(NUMBER_OF_ROWS):
|
||||
if axisIndex != MAIN_AXIS_ROW_INDEX:
|
||||
axes[axisIndex][columnIndex].axis('off')
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
Loading…
Reference in New Issue
Block a user