Compare commits
2 Commits
4ac75448a6
...
80a33428d6
Author | SHA1 | Date | |
---|---|---|---|
|
80a33428d6 | ||
|
9d8e5ddbec |
@ -18,41 +18,41 @@ NUMBER_OF_SUBGROUPS = 2
|
||||
DENOISER = 'wavelet'
|
||||
IMAGES_FOLDER = 'flat-field/TIF'
|
||||
|
||||
setting = IMAGES_FOLDER.replace('/', '_') + f'_{DENOISER}'
|
||||
|
||||
imagesFileNames = os.listdir(IMAGES_FOLDER)
|
||||
# To not have a bias (chronological for instance) when split to make subgroups.
|
||||
shuffle(imagesFileNames)
|
||||
numberOfImagesPerSubgroup = len(imagesFileNames) // NUMBER_OF_SUBGROUPS
|
||||
numberOfImagesThresholds = range(numberOfImagesPerSubgroup, numberOfImagesPerSubgroup + 1)
|
||||
|
||||
subgroupsPrnuEstimatesNpArray = []
|
||||
for subgroupIndex in tqdm(range(NUMBER_OF_SUBGROUPS), 'Subgroup'):
|
||||
subgroupPrnuEstimateNpArray = []
|
||||
subgroupIterativeMean = iterativeMean()
|
||||
subgroupImagesFileNames = imagesFileNames[numberOfImagesPerSubgroup * subgroupIndex : numberOfImagesPerSubgroup * (subgroupIndex + 1)]
|
||||
for imageFileName in tqdm(subgroupImagesFileNames, f'Image of subgroup {subgroupIndex}'):
|
||||
imagePath = f'{IMAGES_FOLDER}/{imageFileName}'
|
||||
imagePil = Image.open(imagePath)
|
||||
numberOfImagesPerSubgroup = len(imagesFileNames) // NUMBER_OF_SUBGROUPS
|
||||
|
||||
subgroupsIterativeMean = [iterativeMean() for _ in range(NUMBER_OF_SUBGROUPS)]
|
||||
rmss = []
|
||||
for subgroupImageIndex in tqdm(range(numberOfImagesPerSubgroup), 'Subgroup image index'):
|
||||
for subgroupIndex in tqdm(range(NUMBER_OF_SUBGROUPS), 'Subgroup'):
|
||||
imageIndex = (subgroupIndex * NUMBER_OF_SUBGROUPS) + subgroupImageIndex
|
||||
imageFileName = imagesFileNames[imageIndex]
|
||||
imageFilePath = f'{IMAGES_FOLDER}/{imageFileName}'
|
||||
imagePil = Image.open(imageFilePath)
|
||||
imageNpArray = img_as_float(np.array(imagePil))
|
||||
imagePrnuEstimateNpArray = imageNpArray - denoise(imageNpArray, DENOISER)
|
||||
subgroupIterativeMean = subgroupsIterativeMean[subgroupIndex]
|
||||
subgroupIterativeMean.add(imagePrnuEstimateNpArray)
|
||||
subgroupPrnuEstimateNpArray += [subgroupIterativeMean.mean]
|
||||
if subgroupIndex == NUMBER_OF_SUBGROUPS - 1:
|
||||
assert NUMBER_OF_SUBGROUPS == 2
|
||||
rms = rmsDiffNumpy(subgroupIterativeMean.mean, subgroupsIterativeMean[1 - subgroupIndex].mean)
|
||||
rmss += [rms]
|
||||
|
||||
subgroupsPrnuEstimatesNpArray += [subgroupPrnuEstimateNpArray]
|
||||
|
||||
mostImagesSubgroupPrnuEstimatesNpArray = [subgroupPrnuEstimatesNpArray[-1] for subgroupPrnuEstimatesNpArray in subgroupsPrnuEstimateNpArray]
|
||||
mostImagesSubgroupPrnuEstimatesNpArray = [subgroupIterativeMean.mean for subgroupIterativeMean in subgroupsIterativeMean]
|
||||
minimum = np.min(mostImagesSubgroupPrnuEstimatesNpArray)
|
||||
maximum = np.max(mostImagesSubgroupPrnuEstimatesNpArray)
|
||||
|
||||
for subgroupIndex in range(NUMBER_OF_SUBGROUPS):
|
||||
plt.imsave(f'prnu_subgroup_{subgroupIndex}.png', (subgroupsPrnuEstimateNpArray[subgroupIndex][-1] - minimum) / (maximum - minimum))
|
||||
|
||||
rmss = []
|
||||
for numberOfImagesIndex in range(len(numberOfImagesThresholds)):
|
||||
rms = rmsDiffNumpy(subgroupsPrnuEstimatesNpArray[0][numberOfImagesIndex], subgroupsPrnuEstimatesNpArray[1][numberOfImagesIndex])
|
||||
rmss += [rms]
|
||||
plt.imsave(f'{setting}_estimated_prnu_subgroup_{subgroupIndex}.png', (subgroupsIterativeMean[subgroupIndex].mean - minimum) / (maximum - minimum))
|
||||
|
||||
plt.title(f'RMS between both subgroups estimated PRNUs with {DENOISER} denoiser for a given number of images among them')
|
||||
plt.xlabel('Number of images of each subgroup')
|
||||
plt.ylabel('RMS between both subgroups estimated PRNUs')
|
||||
plt.plot(rmss)
|
||||
plt.show()
|
||||
plt.savefig(f'{setting}_rms_between_estimated_prnu_of_2_subgroups.svg')
|
||||
#plt.show()
|
||||
|
Loading…
Reference in New Issue
Block a user