Compare commits

..

2 Commits

Author SHA1 Message Date
934add5d91
Add boxplot for the specified denoisers 2024-05-10 00:14:30 +02:00
73fb61b16d
Correct missing denoiser usage 2024-05-10 00:13:47 +02:00

View File

@ -6,8 +6,8 @@ import numpy as np
PREFIX = 'means/mean_rafael_230424_'
def getImageByColor(color):
filePath = PREFIX + f'{color}.npy'
def getImageByColor(color, denoiser):
filePath = PREFIX + f'{denoiser}_{color}.npy'
image = np.load(filePath)
return image
@ -20,13 +20,16 @@ DENOISERS = [
]
for denoiser in DENOISERS:
singleColorChannelImages = {color: getImageByColor(color) for color in Color}
singleColorChannelImages = {color: getImageByColor(color, denoiser) for color in Color}
multipleColorsImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelImages)
multipleColorsImageDenoisers[denoiser] = multipleColorsImage
plt.boxplot(list(map(np.ravel, multipleColorsImageDenoisers.values())), labels = DENOISERS)
plt.grid(True)
plt.show()
def getExtreme(extreme):
vExtreme = extreme(list(multipleColorsImageDenoisers.values()))
#print(vExtreme)
return vExtreme
vMin, vMax = [getExtreme(extreme) for extreme in [np.min, np.max]]