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1 Introduction

1.1 Motivation

We live in a digitalized world where we face more and more images and videos,
and distinguishing truth from falsehood is increasingly difficult. This is no-
tably due to the technological progress of artificial intelligence (AI) in terms
of image and video synthesis and deepfakes. This progress involves challenges
of unprecedented magnitude regarding misinformation, cybercrime, and privacy
violations. Indeed, ill-intentioned parties may use falsified images and videos
to manipulate public opinion or even mislead government services. This is par-
ticularly dangerous in the current geopolitical context due to the COVID-19
pandemic, wars (Russo-Ukrainian and Israel-Hamas), and democratic elections
(Europe, the United States, and the United Kingdom). The forensic analysis of
images has emerged as a crucial battlefield for truth, and it becomes imperative
to be able to distinguish an authentic image from a falsified or even generated
one.

Providing information about the device that captured an image, such as
what device model or what device instance took this image, is important for
different forensic applications. While the aim of cameras is to capture photos as
accurately as possible, in this work, we are interested in the image noise, that is,
the difference between the actual scene and the captured photo. In this context,
the Photo Response Non-Uniformity (PRNU) is an unintentional image noise
component obtained when manufacturing cameras. It consists, for each pixel
sensor independently from each other, of incorrectly estimating the actual scene
luminance by a constant offset. Hence, during the whole life of the camera, each
pixel sensor constantly either overestimates or underestimates the luminance of
the actual scene. As a result, the PRNU acts as a unique camera fingerprint.
Being able to extract the unique camera fingerprint behind each photo makes
it possible to determine which camera took the given photo |[LFGO06; |Gar+23|
and detect modifications within the images by retrieving in these regions a
different PRNU than those found with another photo from the same camera.
Furthermore, for a given camera model, identical hardware architecture and
image processing pipeline are involved. As a result, similarly to leveraging
the PRNU, it is possible to assign a camera model and an image processing
pipeline (specific to a given image editing software, for instance) to photos.
These authentication pieces of information are actively used by law enforcement
agencies and journalists.

However, modern smartphones implement additional image processing steps
in order to further improve the quality of the photos. These extra steps involve
merging groups of adjacent pixels in a photo or even merging several shots of
the same scene. The performance of current methods leveraging the PRNU is
impaired by such heavy image-processing pipelines. As a result, current methods
deliver more and more false positives when assigning cameras to photos [IFP21].
Thus, law enforcement agencies and journalists urge scientists to renew existing
PRNU extraction methods as they are about to become useless for modern
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Figure 1: To estimate the PRNU of a given camera, we consider multiple photos
of this camera, extract their noise by means of denoising algorithms, and, finally,
compute the mean pixelwise

smartphones.

The initial aim of this project was to consider artifacts involved by the
heavier image processing pipelines of smartphones leading to false positives for
the various forensic tasks leveraging the PRNU. However, even without these
post-processing stages, the current state of the art of PRNU analysis suffers from
a lack of reproducibility and experiments. This led us to focus on understanding
and experimenting with each concept of the estimation and comparison of PRNU
in order to continue in the best way this topic in the thesis that will follow this
internship, see Section

1.2 Intuition

As depicted in Figure[1] to estimate the PRNU of a given camera, we consider
multiple photos of this camera, extract their noise by means of denoising algo-
rithms, and, finally, compute the mean pixel-wise. The theoretical justification
is that the extracted noise is the sum of three components: scene residue, ran-
dom noise, and PRNU. The scene residue is due to the imperfect denoiser used,
which interprets part of the actual scene as noise. The random noise, indepen-
dently from the PRNU, is mostly due to the photonic nature of light. Photons
arriving at a pixel sensor follow a Poisson law. The key idea is that averaging
on multiple images keeps the PRNU as is and reduces random noise. As we
consider different scenes, the scene residue is predominant over the PRNU.



2 Photo Response Non-Uniformity (PRNU)

2.1 Noise definition

The notion of noise in an image comes from the acquisition of images. The
first step in acquiring a raw image is to count the number of incident photons
on the sensor during exposure time using a sensor. Two different technologies
exist for this purpose: charge-coupled device (CCD) and complementary-metal
oxide-semiconductor (CMOS). Even if their operating principles differ, their
modelization can be made similar [Agu+13|. Both transform incident photons
into electronic charges, causing detection devices to generate and store electrons
in a potential well. The noise in an image thus corresponds to the error from
the sensor between the number of photons representing the actual scene and the
counted photons.

2.2 Types of noise

There are different types of image noise, divided into two large families.

2.2.1 Pattern noise or non-uniformities

On the one hand, the pattern noises [Jah10|, or non-uniformities, among which
the best known is Photo Response Non-Uniformity (PRNU), are related to the
position in the image. That is, each pixel, independently from its neighbors,
deviates with a constant shift from the correct luminance estimation. These
non-uniformities stem from the difference in the accuracy of photon counting in
different pixel sensors. These noises can take different forms: an additional count
of photons in the dark (DSNU), a slightly low-frequency gradient in the noise
variance, periodic noise due to electromagnetic interference in the camera, and
finally, a different noise in each pixel due to slight differences in the construction
of each sensor, allowing each pixel to be characterized. The non-uniformities,
by nature localized, change from one camera to another.

2.2.2 Random noise

On the other hand, the so-called random noises represent a variation in the
counted photos when capturing an image. They do not depend on the pixel
and are generally statistically modeled. Many sources of noise belong to this
family: shot noise due to the physical nature of the light, dark current, which
represents a variation around the DSNU seen above, and thermal and electronic
reading noises. Under typical capture conditions, shot noise dominates. All of
these noises in the raw image can be modeled as a Poisson distribution, i.e. a
Gaussian noise whose variance linearly depends on the actual luminance.

To illustrate the difference between non-uniformities and random noises, it
can be understood that non-uniformities tend to be preserved when several
captures of the same scene are averaged, while random noises will be reduced
inversely when computing the mean.



3 Raw and processed images

3.1 Usage of each image type

As described in Section [2.1] cameras count incident photons at each pixel sensor
during the exposure time and produce an unprocessed (or minimally processed)
image qualified as raw. In practice, however, the observed images are not raw
but go through a traditional processing pipeline to become visually intelligible,
a simplified version of which can be seen in Figure 2l Usually, photographers
prefer raw images to precisely process their photos the way they want, while
smartphone end-users prefer already processed images that are visually intelli-
gible and compressed to be ready to be shared. As a result, separate cameras
often provide both raw and processed images, while smartphones usually only
provide processed images.

Even when smartphone cameras provide raw images, note that these images
are not really raw. Indeed, the Image Signal Processing (ISP) pipeline of smart-
phones usually contains trade-secret steps, including pixel binning and burst
images. The registered burst images and binned pixels are then aggregated to
form a quasi-raw image that is exempt from further post-processing, such as
color and optical corrections, but not fully exempt from processing.

3.2 Processing steps
3.2.1 Raw image capture

As is, raw images would be grayscale. To add the color information, a Color
Filter Array (CFA) is used in the camera to filter the incident photons by
color channel. To do so, the color filter array, consisting of a mosaic of tiny
color filters, is placed over the pixel sensors. A well-known mosaic is the Bayer
pattern, depicted in Figure It is made of a repeated 2 x 2 matrix of pixel
sensors with two green channels in a diagonal and one red and one blue channel
in the other diagonal. Hence it is also named BGGR, GBRG, GRBG, or RGGB.
As a result, each image pixel at this stage has an intensity of either red, green,
or blue. As there is a majority of green pixel sensors, the image at this stage
looks greenish. This visual aspect will be corrected at the color and optical
corrections step described in Section [3.2.3]

3.2.2 Demosaicing

Demosaicing consists of interpolating the missing color values at each pixel to
make each pixel have an intensity in the 3 color channels, Red, Green, and Blue
(RGB), instead of keeping each pixel at an intensity in either red, green, or
blue. This operation keeps the original image resolution. In the raw image,
coming out directly from the sensors, many models exist for these noise sources.
Demosaicing uses neighbor pixels to interpolate the missing color channel values
and introduces, in particular, a spatial correlation in noise; that is, the final pixel
noise depends on the noise of its neighbor pixels. However, this incomplete
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Figure 3: To add the color information, a Color Filter Array (CFA) is used in
the camera to filter the incident photons by color channel. To do so, the color
filter array consists of a mosaic of tiny color filters placed over the pixel sensors.
A well-known mosaic, represented here, is the Bayer pattern.



model was completed only in 2020 [JFM20|. To correctly estimate the PRNU,
the spatial correlation has to be taken into account, as the theoretical PRNU
fixed pattern is intuitively blurred due to spatial averaging.

3.2.3 Color and optical correction

Due to the color filter array used during the raw image capture, described in
Section after demosaicing, the green color channel is over-represented in
comparison with the other color channels. A color correction is applied by an
algorithm to make colors accurately represent the captured scene.

The camera lens introduces notably two artifacts: optical distortion and
vignetting. The former, due to the lens shape, gives a bumpy aspect. The
latter is a decrease of the image brightness towards the periphery compared
to the image center, see the corners of Figure Both artifacts are corrected
thanks to an algorithm [Ma1l7].

3.2.4 Compression

While raw images use 12 or 14 bits per pixel, processed images use 8 bits per
color channel for each pixel. Hence, each pixel uses 24 bits. As each image
is a matrix of thousands by thousands of pixels, storing and sending images
efficiently is crucial. To do so, images are compressed either losslessly, that
is, without loss of information as with the PNG compression format, or with
a lossy compression algorithm such as JPEG. Note that for both compression
schemes, there is a quantization. While PNG compression allows the quantized
data to be perfectly reconstructed from the compressed data, JPEG compression
adds even more spatial correlation, making current PRNU extraction methods
no more theoretically justified. The spatial correlation introduced by JPEG
compression is due to the quantization, the split and the compression of the
image into blocks of 8x8 pixels up to a given precision in the discrete cosine
transform used. Similarly to demosaicing introducing spatial correlation, as
described in Section [3.2.2] if many studies highlight the artifacts created during
JPEG compression of an image, it was only in 2022 that a partial model was
created to understand the impact of compression on the pre-existing noise in
the image |Gar+22].

3.3 Additional smartphone processing
3.3.1 Additional smartphone processing operations

In addition to the traditional image pipeline presented in Section [3.2] modern
smartphones proceed to additional image processing operations. The additional
operations modern smartphones proceed to involve the non-unique artifacts we
will describe in Section The additional operations of modern smartphones
are presented below:



e Pixel binning: as shown in Section [3.2.1] images are typically sampled
using a matrix of colored filters, commonly the Bayer [Bay| pattern. Now,
most sensors sample several adjacent pixels in the same color, and can,
depending on the image, join these pixels in one [JH12|.

e Burst mode and multiple sensors: cameras embedded in mobile phones
usually take several shots from the same scene, with the same camera
sensor or different a different one. These images are then merged into a
single one of superior quality [LFE23; Lec+22|.

e Models of image restoration by diffusion begin to appear, both for denois-
ing, super-resolution and overall improvement of images [Fei+23; (Gao+23;
HJA20; Li+-22].

3.3.2 Non-unique artifacts issue

As mentionned in the previous Sections and modern smartphones
improve the quality of photos by adding image processing steps, for instance,
merging neighboring pixels and photos. In addition to the already well-known
demosaicing and compression steps, these modern smartphone operations in-
crease the spatial correlation making accurate PRNU extraction no more the-
oretically justified. As multiple cameras of a given manufacturer model use an
identical heavy image processing pipeline, the precise spatial correlation implied
by this image processing pipeline blurs the PRNU the same way. As a result,
each camera is less distinguishable from each other. The specific spatial correla-
tion introduced by a given heavy image processing pipeline is named non-unique
artifacts, as all cameras having this heavy image processing pipeline have these
artifacts. As a result, current methods have more and more false positives when
assigning cameras [IFP21]. Users of these PRNU extraction methods urge sci-
entists to renew these existing methods as they are about to become useless for
modern smartphones.

4 Photo Response Non-Uniformity (PRNU) ex-
traction

This section completes Section [[.2] giving a first intuition of the PRNU ex-
traction. In particular, PRNU-based techniques are used by law enforcement
agencies to determine whether one or more ordinary photos, called non-flat-field,
come from a given camera. An example of non-flat-field photo we considered for
experiments detailed in Section [6] is provided in Figure [5} Since this scientific
evidence can be used in a trial, a very low rate of misallocation of the source
camera must be guaranteed. We will present how the PRNU of a camera can be
extracted from one or more photos. The more photos we consider, the greater
our confidence in source camera assignment. In the context of justice, law en-
forcement authorities may have access to cameras suspected of having taken the
given photos. In order to determine which of these cameras, if any, has taken
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Figure 4: Example of RAISE dataset flat-field photo with Nikon D7000 cam-
era [Dan+15]. The scene looks like an orangeish wall.

the given photos, we extract and compare the PRNU of the photos considered
and the one of the camera. To get an optimal extraction of the PRNU of the
camera, evenly illuminated photos, called flat-field photos, are captured under
controlled conditions with the camera. An example of flat-field photo we con-
sidered for experiments detailed in Section [f] is provided in Figure [ In this
way, the scene content leaked to the noise residues described in Section [I.2] are
minimized.

4.1 Methods

Depending on the type of photos considered, that is flat-field or not, more or
less methods for extracting the PRNU can be applied.

4.1.1 Trivial mean flat-field same scene photos

When considering multiple flat-field photos of the same scene taken by a given
camera, a trivial method can be exploited to extract the noise on these photos,
hence extract the camera PRNU. Indeed, for such a specific case, the noise
of images can be obtained by subtracting the average of the images from the
images. This is because the average of the images acts like a denoised version
of the images, as averaging the random noise of the considered images makes
the mean random noise converge to zero. Note that for this method to work
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Figure 5: Example of RAISE dataset non-flat-field photo for Nikon D7000 cam-
era.

correctly the scene captured has to be exactly the same. So the camera should
not move during the capture of the multiple images (by laying the camera on a
surface or by using a tripod) and the scene should not change (attention should
also be paid to possible change in illumination and shadows, if any). When the
camera is available to take flat-field images, this method can thus be used as a
ground truth, as it is trivial, notably as it does not use any denoiser. Compared
to the following more general method using a denoiser, the denoiser used here
consists in subtracting the average of the considered photos from each photo.

For multiple flat-field photos of the same scene taken by a given camera
we can also extract the noise by subtracting from each image the same image
blurred with a Gaussian kernel.

4.1.2 More general method without same-scene photos

The previous trivial mean method does not perform well for photos considering
different scenes as the average of the considered images would not result in a
denoised version of each image as they represent different scenes. To extract
the noise in each image we use a denoiser. The main issue with denoisers is
that they are not perfect, such that some scene residues are still present in the
extracted noise, and denoisers may even involve artifacts.

12
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Figure 6: PRNU in the Fourier domain with attenuated axes.
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Figure 7: PRNU in the image domain with attenuated axes. We clearly notice
the removal of the dotted lines.

4.2 PRNU post-processing

In the previous sections, we focused on the extracted noise of the images, but the
actual unique fingerprint of the cameras consists in their PRNUs. To make the
extracted noise closer to the camera PRNU, multiple post-processing operations

can be applied [Che+-08|:

e Subtract from each noise residue pixel the average of its column, then
subtract the average of its row

e Set pixels of axes in the Fourier domain to the average of its local neighbor
pixels, such that periodic patterns in the domain image are removed, see
Figures [6] and [7]

Similarly to , we found out in the estimated PRNU of RAISE Nikon
D7000 and Rafael Grompone’s flat-field photos what looks like dust circle arti-
facts, see respectively the Figures[§and [0} While these dust circle artifacts may
be used to uniquely identify cameras, they are probably less constant along time
than the PRNU. The circle artifacts in the image domain also result in centered
circles in the Fourier domain with a clear radial profile easing processing them,
see Figures [6] and

Figure [II] summarizes the various typical steps for estimating a camera
PRNU. For each step multiple approaches exist. There are multiple denois-
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Figure 8: RAISE Nikon D7000 camera estimated PRNU using a bilateral de-
noiser. We notice circle artifacts, which might be dust.

Figure 9: Rafael Grompone’s camera estimated PRNU using a bilateral de-
noiser. We clearly notice circle artifacts, which might be dust.

14
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ers, methods of combining noise residuals and PRNU estimate enhancement
operations.

5 PRNU comparison

Once we have estimated the PRNUs for two sets of images, we would like to
compare them to know if both sets of images were acquired with the same
camera. As PRNUs are images of noise, technically the aim is to evaluate how
close both images of noise are. Note that the comparison between PRNUs has
to be done carefully as such a result could be used as evidence in court.

In the first place, distance metrics such as Root Mean Square (RMS) and
Pearson correlation coefficient can be considered. The Pearson correlation co-
efficient is a correlation metric between -1 and 1 where:

e 1 means that both images are perfectly correlated

15



e 0 means that both images are not correlated
e -1 means that both images are perfectly inversely correlated

The Pearson correlation coefficient presents an important limitation: with
the presence of non-unique artifacts, its value raises and produces false pos-
itives [Gar+23]. To address this issue, [Gol08] proposed to use the peak-to-
correlation energy (PCE), which suppresses the effect of periodic pattern. To
preserve the information about the sign of the correlation, a signed version of
the PCE can be used instead. The sPCE metric is the preferred test statistic
in source camera identification applications.

Note that in a use case scenario the image orientation is unknown, so to
correctly test the presence of the PRNU, the sPCE is computed for each possible
rotation and the highest computed sPCE is kept.

To give an order of magnitude in |[GFF09], the authors tested 1,024,050
mismatching images and got a maximum sPCE value of 57. Therefore, they
conclude that, depending on the JPEG quality of the images, a threshold of 60
guarantees a false alarm rate smaller than 1076,

6 Experiments

6.1 Introduction

As described in Section[I.1] we had a step-by-step approach regarding the exper-
iments, starting with estimating, then comparing PRNUs in a very controlled
environment to finally compare them in a practical usage environment. In fact,
the very first images we considered were ones we synthetically generated our-
selves, see Section [6.3.1

In addition to the generated images we started with, we used two sources of
images:

e RAISE proposes non-flat-field photos for 3 Nikon cameras and flat-field
photos for one of these cameras being the Nikon D7000 [Dan+15|. In ad-
dition to the latter camera we focused on the Nikon D90 being the second
camera having taken the most photos. These flat-field photos captured
an orangeish wall, see Figure [ This camera generated both raw images
(.nef) and processed images (.tif).

e Rafael Grompone’s camera, a SONY ILCE-6000. This camera generated
both raw images (.arw) and processed images (.jpg). We first worked with
photos of a white wall and dark sky but then images of a bright cloudless
sky, see Figure

Note that the experiments were coded in Python and are publicly available
at [Loi24a} Loi24b|. Depending on the denoiser used, the denoising time varies
significantly. The trivial mean flat-field same scene method when applicable and
the wavelet denoiser for other cases can help to prototype but using bilateral
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Figure 12: Example of Rafael Grompone flat-field photo taken with a SONY
ILCE-6000 camera. The scene is a cloudless sky.

denoiser seems more correct. Indeed, the bilateral denoiser has less column and
row artifacts, and it makes unique artifacts, such as dust circles described in
Section[4.2] more significant than when using the unbiased trivial mean flat-field
method. Similarly, concerning comparing PRNUs, sPCE computation takes
significantly more time than other metrics. While considering only centered crops
can provide interesting results, our parallelized implementation is able to execute
in a few minutes our experiments involving using the bilateral denoiser and
sPCE for 200 images on an AMD EPYC 7371 processor. To read raw images,
we use the rawpy library. To the best of our knowledge, we have to serialize
raw images into Numpy arrays to speed up their successive loads when using
crops, thanks to mapping RAM memory and disk to avoid loading the whole
images. This is especially true when all experiment (crops of) images do not fit
into memory. Alternatively, when all (crops of) images do not fit into memory,
computing directly the mean of n images with mean = 22 may not be
possible. However, it is possible to compute the mean iteratively for ¢ between

1 and n, with:

mean;_1 * (i — 1) + image;
mean; = . )
i

and meang the image made of zeros and with the same resolution as other im-
ages. With this computation method mean = mean,,. That way by proceeding
one image at a time, we have a memory complexity of a single image plus an
integer to keep track of how many images composed the iterative mean, instead

17



of n images.

6.2 Denoisers

First we proceeded with the wavelet denoiser [CY V00| but as it may involve sig-
nificant artifacts we moved to notably bilateral [TM98] and low pass denoisers.
While we use skimage library for the wavelet and bilateral denoisers, concerning
the low pass denoiser we implemented it on our own.

The low pass denoiser consists in applying a Fourier transform to the image
we want to denoise. In this way, we have a frequential view of the image, so
computing the convolution with a unit intensity centered circle and applying an
inverse Fourier transform removes the high frequency components of the image.
As previously, to only obtain the noise instead of the denoised image, we can
subtract the denoised image from the image itself. Similarly to the low pass
denoiser implementation, to extract the image noise, we can just do the inverse,
that is a high pass filter, consisting in computing in the Fourier domain the
correlation of the image with a same size unit intensity image subtracted by
a unit intensity centered circle. Note that to avoid introducing a frequential
intensity artifact on the denoised image or image noise, a centered circle with a
decreasing intensity has to be used instead of a constant unit intensity.

6.3 Types of images
6.3.1 Generated images

One of the first experiments we conducted consisted in estimating an artificially
generated PRNU. To do so, we considered a synthetic, noiseless, non-flat-field
image, see Figure to which we added Gaussian noise, see Figure and
the PRNU, see Figures and This experiment is depicted in Figure
The artificial PRNU used for this experiment is an image with “PRNU” written
using Gaussian noise, see Figure[I3D] As expected, we notice in Figure 131
and that the PRNU gets more and more significant when averaging more
and more modified photos. To make the denoiser work harder we have added
noise to the noiseless images and wrote “PRNU” using Gaussian noise. We first
considered images processed such that it is assumed that they do not contain
noise. To be closer to realistic PRNUs, we considered writing PRNU not as
either 0, where “PRNU” is not written, or 1, where “PRNU” is written, but
instead for the latter as a Gaussian noise, see Actual Gaussian noised PRNU.
To avoid a trivial detection of where there is Gaussian noise, we first added to
the noiseless image some Gaussian noise with a wider variance than the variance
used to write “PRNU”. Visually we clearly notice in Figure the quite strong
Gaussian noise compared to the[[3d] where we do not even barely notice the text
“PRNU”. The more photos we average to estimate the PRNU, the more it is
estimated correctly. Starting at 96 photos, we start visually to be able to read
by naked eye the text “PRNU”. It is interesting to note that the Root-Mean-
Square (RMS) distance between the estimated PRNU and the actual PRNU
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Figure 13: PRNU estimation with different number of images having Gaussian
noise and Gaussian noised PRNU

does not decrease when we consider more and more photos while we visually
notice the text “PRNU” increasingly better. Note that the resolution of the
estimated PRNU image changes as we split the original photos into more pieces
to match the wanted number of photos to better estimate the PRNU.

6.3.2 Flat-field images

Contrary to the previous case, we consider here photos with natural noise in-
cluding PRNU. Hence, evaluating the correctness of the PRNU estimation looks
less clear, as we do not have any known PRNU ground truth for the considered
camera.

If we consider multiple photos for each camera, then we can estimate the
PRNU for each camera. In that way we can compute an accuracy in assigning
cameras to new photos by guessing that the camera having the lowest distance
between its estimated PRNU and the one of the considered photo is most prob-
ably the camera having taken this photo.

If we consider multiple photos for a single camera, then we cannot evaluate
our approach by measuring the accuracy in camera attribution, as there is a
single camera. However, we can split the photos into two groups and estimate
the PRNUs among each group. The more photos we consider, the more we
would expect both PRNUs to be closer to each other. However, we have to
verify that both estimated PRNUs are not trivial purely black images.

With photos of a single camera, we can artificially generate multiple camera-
like photos. Indeed, thanks to the independence of the PRNU from a pixel to
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the other, we can for instance split with a photo vertically into two equal parts
to get two photos from each photo. In this case, the left-half photos and the
right-half photos behave like two different cameras. Being able to predict which
half camera took a given half photo, shows that we are able to leverage the
PRNU location. On the Figure we notice that for RAISE flat-field TIF
photos, we are able to perfectly predict whether the provided photo is the left
or right half of the camera. This experiment consists in considering 100 photos
for each camera and computing the sPCE within random pairs of photos where
both photos are from the same camera or from two different ones. That way we
have 100 random pairs of photos from two different cameras and 100 random
pairs of photos from the same camera. As expected, the sPCE between pairs of
images:

e of two different cameras is near zero, as both PRNU are independent.
In fact the sPCE is near 10, as we probably have not post-processed the
PRNU that is just the extracted noise. So the estimated PRNU probably
contains common artifacts due to the identical processing performed by
the camera on the left and right halves.

e of the same camera is high, as both PRNU are identical. It is also inter-
esting to note that the left half has a higher sPCE than the right half, as
the latter is darker notably in terms of vignetting and with the bottom
right shadow possibly being the camera operator’s head.

This experiment prediction is perfect, as no sPCEs of pairs of images of the
same camera is lower than the sSPCE of pairs of images of two different cameras.
In addition, this perfect prediction is quite reliable in the sense that there is
quite a significant gap of about 40 between the sPCEs of pairs of images of the
same camera and the ones of two different cameras.

An additional interesting remark is that being able to predict whether half
of a photo is from the left or the right half of the camera means that we can
generalize to some extent the prediction of the location of a photo crop. In other
words, if a part of a photo is falsified, then the PRNU might be altered and we
might be able to detect such a forgery [Che+0§].

6.3.3 Non-flat-field images

Figure [T shows the results of the same experiment conducted in a less con-
trolled environment that is with left and right halves photos of flat-field for the
same RAISE Nikon D7000 camera. These results are similar to the previous ex-
periment with flat-field photos except that the source camera prediction is not
perfect anymore. Indeed, there are two incorrect predictions and, furthermore,
predictions are less reliable, as there is no more gap between distributions. Such
degradation of performances can be expected with non-flat-field photos as they
are taken in a less controlled environment.

As RAISE proposes multiple non-flat-field photos per camera, we ran the
same experiment as previously but with two different camera models, Nikon
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Figure 14: sPCEs of pairs of flat-field images within and across left and right
halves of RAISE Nikon D7000 camera
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Figure 15: sPCEs of pairs of non-flat-field images within and across left and
right halves of RAISE Nikon D7000 camera
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Figure 16: sPCEs of pairs of non-flat-field images within and across RAISE
Nikon D7000 and Nikon D90 cameras

D7000 and Nikon D90, from the same manufacturer, Nikon, instead of consid-
ering the left and right halves of the same Nikon D7000 camera. The results of
this experiment are depicted in Figure They are very similar to the previ-
ous experiment results. These results show that the PRNU, as a unique camera
fingerprint, is effectively estimable.

Figure is a zoom on the 100x100 centered crop of the estimated PRNU
from Figure [1} it shows that the camera estimated PRNU is globally random.

7 Conclusion

Although we have not had the opportunity to investigate the issue of PRNU
with smartphones yet, we have established a public step-by-step reliable PRNU
estimation and comparison method that we evaluated with generated, practical
raw and processed photos.The results of these experiments show with reliability
that the PRNU, as a unique camera fingerprint, is indeed estimable and can be
localized to possibly detect forgeries within the considered images.
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Figure 17: 100x100 centered crop of RAISE Nikon D7000 camera estimated
PRNU with 50 non-flat-field TTF photos.
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8 Meta-information

This work is intended to continue next year into a thesis entitled Murmurs
of tmages: Forensic analysis of image noise patterns and structures for the
detection of falsified images, funded by the “Agence Ministérielle pour I'TA de
Défense” (AMIAD) located at the Ecole Polytechnique. To help spread this
reproducible research on estimating and comparing PRNUs, an IPOL MLBriefs
article |[Loi+24a] with an online demo |Loi+24b| is planned to be submitted.
To iterate quickly with experiments we achieved to leverage correctly, that is
with our wanted up-to-date software programs, the possible parallelism of one
32 threads IPOL computation server thanks to Nix.
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