Files
Robust_image_source_identif…/datasets/raise/attribute_source_camera.py
2024-05-03 02:03:59 +02:00

139 lines
7.5 KiB
Python
Executable File

#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from utils import denoise, iterativeMean, getColorChannel, escapeFilePath, Color, mergeSingleColorChannelImagesAccordingToBayerFilter, rescaleRawImageForDenoiser, updateExtremes, saveNpArray
import sys
import os
import random
sys.path.insert(0, '../../algorithms/distance/')
from rms_diff import rmsDiffNumpy
DENOISER = 'wavelet'
IMAGES_CAMERAS_FOLDER = {
'RAISE': 'flat-field/nef',
'Rafael 23/04/24': 'rafael/230424',
}
TRAINING_PORTION = 0.5
setting = ','.join([escapeFilePath(imageCameraFolder) for imageCameraFolder in IMAGES_CAMERAS_FOLDER]) + f'_{DENOISER}'
imagesCamerasFileNames = {camera: os.listdir(imageCameraFolder) for camera, imageCameraFolder in IMAGES_CAMERAS_FOLDER.items()}
random.seed(0)
# To not have a bias (chronological for instance) when split to make training and testing sets.
for camera in IMAGES_CAMERAS_FOLDER:
random.shuffle(imagesCamerasFileNames[camera])
minimumNumberOfImagesCameras = 16#min([len(imagesCamerasFileNames[camera]) for camera in IMAGES_CAMERAS_FOLDER])
for camera in IMAGES_CAMERAS_FOLDER:
imagesCamerasFileNames[camera] = imagesCamerasFileNames[camera][:minimumNumberOfImagesCameras]
print(camera, imagesCamerasFileNames[camera])
numberOfCameras = len(IMAGES_CAMERAS_FOLDER)
camerasIterativeMean = {camera: iterativeMean() for camera in IMAGES_CAMERAS_FOLDER}
# Assume that for each camera, its images have the same resolution.
# The following consider a given color channel resolution, assuming they all have the same resolution.
minimalColorChannelCameraResolution = None
for camera in IMAGES_CAMERAS_FOLDER:
imageFileName = imagesCamerasFileNames[camera][0]
imageFilePath = f'{IMAGES_CAMERAS_FOLDER[camera]}/{imageFileName}'
singleColorChannelImagesShape = getColorChannel(imageFilePath, Color.RED).shape
if minimalColorChannelCameraResolution is None or singleColorChannelImagesShape < minimalColorChannelCameraResolution:
minimalColorChannelCameraResolution = singleColorChannelImagesShape
minColor = None#13#None
maxColor = None#7497#None
accuracy = []
numberOfTrainingImages = int(minimumNumberOfImagesCameras * TRAINING_PORTION)
numberOfTestingImages = minimumNumberOfImagesCameras - int(minimumNumberOfImagesCameras * TRAINING_PORTION)
cameraTestingImagesNoise = {}
def getImageFilePath(camera, cameraImageIndex):
imageFileName = imagesCamerasFileNames[camera][cameraImageIndex]
imageFilePath = f'{IMAGES_CAMERAS_FOLDER[camera]}/{imageFileName}'
return imageFilePath
def getSingleColorChannelImages(camera, cameraImageIndex):
imageFilePath = getImageFilePath(camera, cameraImageIndex)
singleColorChannelImages = {color: rescaleIfNeeded(getColorChannel(imageFilePath, color)[:minimalColorChannelCameraResolution[0],:minimalColorChannelCameraResolution[1]], minColor, maxColor) for color in Color}
return singleColorChannelImages
def getMultipleColorsImage(singleColorChannelImages):
multipleColorsImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelImages)
return multipleColorsImage
def getImagePrnuEstimateNpArray(singleColorChannelImages, multipleColorsImage):
singleColorChannelDenoisedImages = {color: denoise(singleColorChannelImages[color], DENOISER) for color in Color}
multipleColorsDenoisedImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelDenoisedImages)
imagePrnuEstimateNpArray = multipleColorsImage - multipleColorsDenoisedImage
return imagePrnuEstimateNpArray
from utils import silentTqdm
#tqdm = silentTqdm
returnSingleColorChannelImage = lambda singleColorChannelImage, _minColor, _maxColor: singleColorChannelImage
for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else []) + [False], 'Compute extremes'):
rescaleIfNeeded = returnSingleColorChannelImage if computeExtremes else rescaleRawImageForDenoiser
if not computeExtremes:
print(f'{minColor=} {maxColor=}')
print('Extracting noise of testing images')
for camera in tqdm(IMAGES_CAMERAS_FOLDER, 'Camera'):
for cameraTestingImageIndex in tqdm(range(numberOfTestingImages), 'Camera testing image index'):
print(f'{camera=} {numberOfTrainingImages + cameraTestingImageIndex=}')
singleColorChannelImages = getSingleColorChannelImages(camera, numberOfTrainingImages + cameraTestingImageIndex)
multipleColorsImage = getMultipleColorsImage(singleColorChannelImages)
imagePrnuEstimateNpArray = getImagePrnuEstimatedNpArray(singleColorChannelImages, multipleColorsImage)
cameraTestingImagesNoise[camera] = cameraTestingImagesNoise.get(camera, []) + [imagePrnuEstimateNpArray]
for cameraTrainingImageIndex in tqdm(range(minimumNumberOfImagesCameras if computeExtremes else numberOfTrainingImages), 'Camera training image index'):
for cameraIndex, camera in enumerate(tqdm(IMAGES_CAMERAS_FOLDER, 'Camera')):
singleColorChannelImages = getSingleColorChannelImages(camera, cameraTrainingImageIndex)
multipleColorsImage = getMultipleColorsImage(singleColorChannelImages)
if computeExtremes:
minColor, maxColor = updateExtremes(multipleColorsImage, minColor, maxColor)
continue
imagePrnuEstimateNpArray = getImagePrnuEstimatedNpArray(singleColorChannelImages, multipleColorsImage)
cameraIterativeMean = camerasIterativeMean[camera]
cameraIterativeMean.add(imagePrnuEstimateNpArray)
if cameraIndex == numberOfCameras - 1:
numberOfTrainingImagesAccuracy = 0
print(f'{numberOfTestingImages=} {numberOfCameras=}')
# Loop over each camera testing image folder.
for actualCamera in IMAGES_CAMERAS_FOLDER:
for cameraTestingImageIndex in tqdm(range(numberOfTestingImages), 'Camera testing image index'):
cameraPredicted = None
minimalDistance = None
# Loop over each camera to compute closeness between the considered testing image noise and the estimated PRNUs of the various cameras.
for camera in IMAGES_CAMERAS_FOLDER:
distance = rmsDiffNumpy(cameraTestingImagesNoise[actualCamera][cameraTestingImageIndex], camerasIterativeMean[camera].mean)
print(f'{cameraTestingImageIndex=} {camera=} {actualCamera=} {distance=}')
if minimalDistance is None or distance < minimalDistance:
minimalDistance = distance
cameraPredicted = camera
print(f'Predicted camera {cameraPredicted} {"good" if cameraPredicted == actualCamera else "bad"}')
if cameraPredicted == actualCamera:
numberOfTrainingImagesAccuracy += 1
accuracy += [numberOfTrainingImagesAccuracy / (numberOfTestingImages * numberOfCameras)]
for camera in IMAGES_CAMERAS_FOLDER:
plt.imsave(f'{setting}_estimated_prnu_camera_{escapeFilePath(camera)}.png', (camerasIterativeMean[camera].mean))
plt.title(f'Accuracy of camera source attribution thanks to a given number of images to estimate PRNUs with {DENOISER} denoiser')
plt.xlabel('Number of images to estimate PRNU')
plt.ylabel('Accuracy of camera source attribution')
plt.plot(accuracy)
internalTitle = f'{setting}_accuracy_of_camera_source_attribution'
saveNpArray(internalTitle, accuracy)
plt.savefig(f'{internalTitle}.svg')