Files
Robust_image_source_identif…/datasets/raise/split_and_compare_prnus_of_subgroups.py
2024-04-27 19:24:12 +02:00

55 lines
2.2 KiB
Python
Executable File

#!/usr/bin/python3
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from utils import denoise, iterativeMean
from skimage import img_as_float
import sys
import os
from random import shuffle
sys.path.insert(0, '../../algorithms/distance/')
from rms_diff import rmsDiffNumpy
NUMBER_OF_SUBGROUPS = 2
DENOISER = 'wavelet'
IMAGES_FOLDER = 'flat-field/TIF'
imagesFileNames = os.listdir(IMAGES_FOLDER)
# To not have a bias (chronological for instance) when split to make subgroups.
shuffle(imagesFileNames)
numberOfImagesPerSubgroup = len(imagesFileNames) // NUMBER_OF_SUBGROUPS
subgroupsIterativeMean = [iterativeMean() for _ in range(NUMBER_OF_SUBGROUPS)]
rmss = []
for subgroupImageIndex in tqdm(range(numberOfImagesPerSubgroup), 'Subgroup image index'):
for subgroupIndex in tqdm(range(NUMBER_OF_SUBGROUPS), 'Subgroup'):
imageIndex = (subgroupIndex * NUMBER_OF_SUBGROUPS) + subgroupImageIndex
imageFileName = imagesFileNames[imageIndex]
imageFilePath = f'{IMAGES_FOLDER}/{imageFileName}'
imagePil = Image.open(imageFilePath)
imageNpArray = img_as_float(np.array(imagePil))
imagePrnuEstimateNpArray = imageNpArray - denoise(imageNpArray, DENOISER)
subgroupIterativeMean = subgroupsIterativeMean[subgroupIndex]
subgroupIterativeMean.add(imagePrnuEstimateNpArray)
if subgroupIndex == NUMBER_OF_SUBGROUPS - 1:
assert NUMBER_OF_SUBGROUPS == 2
rms = rmsDiffNumpy(subgroupIterativeMean.mean, subgroupsIterativeMean[1 - subgroupIndex].mean)
rmss += [rms]
mostImagesSubgroupPrnuEstimatesNpArray = [subgroupIterativeMean.mean for subgroupIterativeMean in subgroupsIterativeMean]
minimum = np.min(mostImagesSubgroupPrnuEstimatesNpArray)
maximum = np.max(mostImagesSubgroupPrnuEstimatesNpArray)
for subgroupIndex in range(NUMBER_OF_SUBGROUPS):
plt.imsave(f'prnu_subgroup_{subgroupIndex}.png', (subgroupsIterativeMean[subgroupIndex].mean - minimum) / (maximum - minimum))
plt.title(f'RMS between both subgroups estimated PRNUs with {DENOISER} denoiser for a given number of images among them')
plt.xlabel('Number of images of each subgroup')
plt.ylabel('RMS between both subgroups estimated PRNUs')
plt.plot(rmss)
plt.show()