Files
Robust_image_source_identif…/datasets/noise_free_test_images/estimate_prnu.py

100 lines
4.5 KiB
Python

# Notes: https://gitea.lemnoslife.com/Benjamin_Loison/Robust_image_source_identification_on_modern_smartphones/issues/25
import os
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.insert(0, '../../algorithms/image_utils/')
from image_utils import showImageWithMatplotlib, randomGaussianImage, toPilImage, getPrnuShownAsSuch
sys.path.insert(0, '../../algorithms/context_adaptive_interpolator/')
from context_adaptive_interpolator import contextAdaptiveInterpolator
sys.path.insert(0, '../../algorithms/distance/')
from rms_diff import rmsDiffNumpy
from skimage.restoration import denoise_tv_chambolle
datasetPath = 'no_noise_images'
# Note that contrarily to `datasets/fake/`, here we do not have images being Gaussian with `scale` `1` but actual images with pixel values between 0 and 255.
# In addition to the range difference, note that the distribution in the first set of images was a Gaussian and here is very different and specific.
PRNU_FACTOR = 0.01
NOISE_FACTOR = 0.1
np.random.seed(0)
SPLIT_N_X_N_S = [1, 2, 4]
# len(SPLIT_N_X_N_S)
fig, axes = plt.subplots(2, 4)
fig.suptitle('PRNU estimation with different number of images having Gaussian noise and Gaussian noised PRNU')
for splitNXNIndex, splitNXN in enumerate(SPLIT_N_X_N_S):
IMAGE_SIZE_SHAPE = [dimension // splitNXN for dimension in (704, 469)]
#prnuNpArray = 255 * randomGaussianImage(scale = PRNU_FACTOR, size = IMAGE_SIZE_SHAPE)
prnuNpArray = getPrnuShownAsSuch(IMAGE_SIZE_SHAPE, 255) * PRNU_FACTOR
def isIn256Range(x):
return 0 <= x and x <= 255
imagesPrnuEstimateNpArray = []
isFirstImage = True
for imageName in os.listdir(datasetPath):
if imageName.endswith('.png'):
imagePath = f'{datasetPath}/{imageName}'
imageWithoutPrnuPil = Image.open(imagePath).convert('F')
imageWithoutPrnuNpArray = np.array(imageWithoutPrnuPil)
m = IMAGE_SIZE_SHAPE[1]
n = IMAGE_SIZE_SHAPE[0]
imageWithoutPrnuNpArrayTiles = [imageWithoutPrnuNpArray[x : x + m, y : y + n] for x in range(0, imageWithoutPrnuNpArray.shape[0], m) for y in range(0, imageWithoutPrnuNpArray.shape[1], n)]
for imageWithoutPrnuNpArrayTile in imageWithoutPrnuNpArrayTiles:
#print(imageWithoutPrnuNpArrayTile.shape, tuple(IMAGE_SIZE_SHAPE[::-1]))
#if imageWithoutPrnuNpArrayTile.shape != tuple(IMAGE_SIZE_SHAPE[::-1]):
# continue
imageNoise = randomGaussianImage(scale = 255 * NOISE_FACTOR, size = imageWithoutPrnuNpArrayTile.shape)
imageWithPrnuNpArray = imageWithoutPrnuNpArrayTile + prnuNpArray + imageNoise
if splitNXNIndex == 0 and isFirstImage:
axis = axes[0]
axis[0].set_title('First image without noise')
axis[0].imshow(imageWithoutPrnuNpArrayTile)
axis[1].set_title('Actual Gaussian noised PRNU')
axis[1].imshow(prnuNpArray)
axis[2].set_title('F. i. with G. n.')
axis[2].imshow(imageWithoutPrnuNpArray + imageNoise)
axis[3].set_title('F. i. with G. n. and PRNU')
axis[3].imshow(imageWithoutPrnuNpArray + prnuNpArray + imageNoise)
isFirstImage = False
#assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
imageWithPrnuPil = toPilImage(imageWithPrnuNpArray)
#imagePrnuEstimatePil = contextAdaptiveInterpolator(imageWithPrnuPil.load(), imageWithPrnuPil)
#imagePrnuEstimateNpArray = np.array(imagePrnuEstimatePil)
imagePrnuEstimateNpArray = imageWithPrnuNpArray - denoise_tv_chambolle(imageWithPrnuNpArray, weight=0.2, channel_axis=-1)
imagesPrnuEstimateNpArray += [imagePrnuEstimateNpArray]
cameraPrnuEstimateNpArray = np.array(imagesPrnuEstimateNpArray).mean(axis = 0)
rms = rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray, True)
title = f'RMS with actual PRNU: {rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray):.4f}\n(normalized RMS: {rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray, True):.4f})'
axis = axes[1]
axis[splitNXNIndex].set_title(f'Number of images: {len(imagesPrnuEstimateNpArray)}\n{title}')
axis[splitNXNIndex].imshow(cameraPrnuEstimateNpArray)
axes[1][3].axis('off')
plt.tight_layout()
plt.show()