Compare commits

...

13 Commits

Author SHA1 Message Date
0349304632 Delete TODO to use git Issues instead 2023-04-28 01:16:49 +02:00
Antoine Grimod
66de13fff2 added main to automaton.node 2023-01-10 00:39:50 +01:00
Antoine Grimod
17e2f93629 fix oversight in lustre_pp.ml 2023-01-10 00:28:43 +01:00
b0545a2733 Correct some typos 2023-01-10 00:11:35 +01:00
1297835bda Make tests/when_merge.node clearer by using reals 2023-01-10 00:07:49 +01:00
Antoine Grimod
a5f8c720f4 extended when once again 2023-01-09 23:04:36 +01:00
Antoine Grimod
ad4f5e7962 clock unification now works if when is applied to a boolean comparison 2023-01-09 22:54:26 +01:00
dsac
2da1fac66f [passes] linearization of when 2023-01-09 22:51:30 +01:00
dsac
ad74146396 [passes] linearization of merge (untested) 2023-01-09 22:23:00 +01:00
Antoine Grimod
2f0b9a572e error catching 2023-01-09 21:22:37 +01:00
Antoine Grimod
42cbc6ddaf fix typo in code 2023-01-09 21:11:38 +01:00
Antoine Grimod
23e234732f code cleanup 2023-01-09 21:09:29 +01:00
Antoine Grimod
ad97c6b627 first version of clock unification 2023-01-09 20:57:22 +01:00
9 changed files with 330 additions and 109 deletions

5
TODO
View File

@@ -1,5 +0,0 @@
# Parseur
- ajustement des automates
# ...

View File

@@ -77,3 +77,4 @@ type t_ck = base_ck list
and base_ck =
| Base
| On of base_ck * t_expression
| Unknown

View File

@@ -95,7 +95,7 @@ let cp_state_frees fmt (iprog, sts) =
then
Format.fprintf fmt "\tif (st->aux_states[%d]) {\n\
\t\tfree_state_%s((t_state_%s*)(st->aux_states[%d]));\n\
\t\tfree (st->aux_state[%d]);\n\t}\n%a"
\t\tfree (st->aux_states[%d]);\n\t}\n%a"
idx callee_name callee_name idx
idx cp_free_aux (i+1, caller_name)
else Format.fprintf fmt "\tif (st->aux_states[%d])\n\

View File

@@ -160,6 +160,7 @@ and pp_nexts fmt: t_expression list * string list -> unit = function
pp_expression e
n
pp_nexts (exprs, nexts)
| _, _ -> () (*This should never happen*)
and pp_translist fmt: t_state list -> unit = function
| [] -> ()

View File

@@ -25,8 +25,6 @@ let exec_passes ast verbose debug passes f =
| [] -> f ast
| (n, p) :: passes ->
verbose (Format.asprintf "Executing pass %s:\n" n);
try
begin
match p verbose debug ast with
| None -> (exit_error ("Error while in the pass "^n^".\n"); exit 0)
| Some ast -> (
@@ -34,8 +32,6 @@ let exec_passes ast verbose debug passes f =
(Format.asprintf
"Current AST (after %s):\n%a\n" n Lustre_pp.pp_ast ast);
aux ast passes)
end with
| _ -> failwith ("The pass "^n^" should have caught me!")
in
aux ast passes
@@ -45,9 +41,11 @@ let _ =
(** Usage and argument parsing. *)
let default_passes =
["linearization_reset"; "automata_translation"; "remove_if";
"linearization_merge"; "linearization_when";
"linearization_pre"; "linearization_tuples"; "linearization_app";
"ensure_assign_val";
"equations_ordering"] in
"equations_ordering";
"clock_unification"] in
let sanity_passes = ["sanity_pass_assignment_unicity"; "check_typing"] in
let usage_msg =
"Usage: main [-passes p1,...,pn] [-ast] [-verbose] [-debug] \
@@ -85,6 +83,8 @@ let _ =
List.iter (fun (s, k) -> Hashtbl.add passes_table s k)
[
("remove_if", Passes.pass_if_removal);
("linearization_merge", Passes.pass_merge_lin);
("linearization_when", Passes.pass_when_lin);
("linearization_tuples", Passes.pass_linearization_tuples);
("linearization_app", Passes.pass_linearization_app);
("linearization_pre", Passes.pass_linearization_pre);

View File

@@ -6,6 +6,183 @@ open Utils
(** [pass_when_lin] linearizes the when construct so that it only appears as
* main construction of right members of equations. *)
let pass_when_lin verbose debug =
(* prefix of the fresh variables to use and counter to make them unique. *)
let varname_prefix = "_whenlin" in
let count = ref 0 in
(** Auxiliary function that linearizes an expression. *)
let rec aux_expr vars expr toplevel conds =
match expr with
| EVar _ | EConst _ -> [], vars, expr
| EMonOp (t, op, e) ->
let eqs, vars, e = aux_expr vars e false conds in
eqs, vars, EMonOp (t, op, e)
| EBinOp (t, op, e, e') ->
let eqs, vars, e = aux_expr vars e false conds in
let eqs', vars, e' = aux_expr vars e' false conds in
eqs'@eqs, vars, EBinOp (t, op, e, e')
| EComp (t, op, e, e') ->
let eqs, vars, e = aux_expr vars e false conds in
let eqs', vars, e' = aux_expr vars e' false conds in
eqs'@eqs, vars, EComp (t, op, e, e')
| EReset (t, e, e') ->
let eqs, vars, e = aux_expr vars e false conds in
let eqs', vars, e' = aux_expr vars e' false conds in
eqs'@eqs, vars, EReset (t, e, e')
| ETuple (t, l) ->
let eqs, vars, l = List.fold_right
(fun e (eqs, vars, l) ->
let eqs', vars, e = aux_expr vars e false conds in
eqs' @ eqs, vars, (e :: l))
l ([], vars, []) in
eqs, vars, ETuple (t, l)
| EApp (t, n, e) ->
let eqs, vars, e = aux_expr vars e false conds in
eqs, vars, EApp (t, n, e)
| ETriOp (t, op, e, e', e'') ->
let eqs, vars, e = aux_expr vars e false conds in
let eqs', vars, e' = aux_expr vars e' false conds in
let eqs'', vars, e'' = aux_expr vars e'' false conds in
eqs''@eqs'@eqs, vars, ETriOp (t, op, e, e', e'')
| EWhen (t, e, e') ->
let eqs, vars, e = aux_expr vars e false conds in
let eqs', vars, e' = aux_expr vars e' false (e :: conds) in
let e =
List.fold_left
(fun e e' -> EBinOp ([TBool], BOp_and, e,e'))
e conds
in
if toplevel
then
eqs'@eqs, vars, EWhen (t, e, e')
else
begin
if List.length t = 1
then
begin
let newvar = Format.sprintf "%s%d" varname_prefix !count in
let newvar =
match List.hd t with
| TInt -> IVar newvar
| TBool -> BVar newvar
| TReal -> RVar newvar
in
let () = incr count in
let vars = (t @ (fst vars), newvar :: (snd vars)) in
((t, [newvar]), EWhen (t, e, e')) :: eqs'@eqs, vars, EVar (t, newvar)
end
else
raise (PassExn "When should only happen on unary expressions.")
end
in
(** For each node: *)
let aux_when_lin node =
(** Loop on equations to get additional equations and variables. *)
let eqs, vars =
List.fold_left
(fun (eqs, vars) (patt, expr) ->
let eqs', vars, expr = aux_expr vars expr true [] in
(patt, expr) :: eqs' @ eqs, vars)
([], node.n_local_vars) node.n_equations
in
Some { node with n_local_vars = vars; n_equations = eqs }
in
node_pass aux_when_lin
(** [pass_merge_lin] linearizes the merges so that they only appear as main
* construct of right sides of equations.
* This simplifies their handling in next passes and in the C printer. *)
let pass_merge_lin verbose debug =
(* prefix of the fresh variables to use and counter to make them unique. *)
let varname_prefix = "_mergelin" in
let count = ref 0 in
(** Auxiliary function that linearizes an expression. *)
let rec aux_expr vars expr toplevel =
match expr with
| EVar _ | EConst _ -> [], vars, expr
| EMonOp (t, op, e) ->
let eqs, vars, e = aux_expr vars e false in
eqs, vars, EMonOp (t, op, e)
| EBinOp (t, op, e, e') ->
let eqs, vars, e = aux_expr vars e false in
let eqs', vars, e' = aux_expr vars e' false in
eqs'@eqs, vars, EBinOp (t, op, e, e')
| EComp (t, op, e, e') ->
let eqs, vars, e = aux_expr vars e false in
let eqs', vars, e' = aux_expr vars e' false in
eqs'@eqs, vars, EComp (t, op, e, e')
| EReset (t, e, e') ->
let eqs, vars, e = aux_expr vars e false in
let eqs', vars, e' = aux_expr vars e' false in
eqs'@eqs, vars, EReset (t, e, e')
| ETuple (t, l) ->
let eqs, vars, l = List.fold_right
(fun e (eqs, vars, l) ->
let eqs', vars, e = aux_expr vars e false in
eqs' @ eqs, vars, (e :: l))
l ([], vars, []) in
eqs, vars, ETuple (t, l)
| EApp (t, n, e) ->
let eqs, vars, e = aux_expr vars e false in
eqs, vars, EApp (t, n, e)
| ETriOp (_, TOp_if, _, _, _) ->
raise (PassExn "There should no longer be any condition.")
| EWhen (t, e, e') ->
let eqs, vars, e = aux_expr vars e false in
let eqs', vars, e' = aux_expr vars e' false in
eqs @ eqs', vars, EWhen (t, e, e')
| ETriOp (t, TOp_merge, c, e, e') ->
begin
if toplevel
then
begin
let eqs, vars, c = aux_expr vars c false in
let eqs', vars, e = aux_expr vars e false in
let eqs'', vars, e' = aux_expr vars e' false in
eqs@eqs'@eqs'', vars, ETriOp (t, TOp_merge, c, e, e')
end
else
begin
if List.length t = 1
then
let newvar = Format.sprintf "%s%d" varname_prefix !count in
let newvar =
match List.hd t with
| TInt -> IVar newvar
| TBool -> BVar newvar
| TReal -> RVar newvar
in
let () = incr count in
let vars = (t @ (fst vars), newvar :: (snd vars)) in
let eqs, vars, c = aux_expr vars c false in
let eqs', vars, e = aux_expr vars e false in
let eqs'', vars, e' = aux_expr vars e' false in
((t, [newvar]), ETriOp (t, TOp_merge, c, e, e')) :: eqs @ eqs' @ eqs'', vars, EVar (t, newvar)
else
raise (PassExn "Merges should only happen on unary expressions.")
end
end
in
(** For each node: *)
let aux_merge_lin node =
(** Loop on equations to get additional equations and variables. *)
let eqs, vars =
List.fold_left
(fun (eqs, vars) (patt, expr) ->
let eqs', vars, expr = aux_expr vars expr true in
(patt, expr) :: eqs' @ eqs, vars)
([], node.n_local_vars) node.n_equations
in
Some { node with n_local_vars = vars; n_equations = eqs }
in
node_pass aux_merge_lin
(** [pass_if_removal] replaces the `if` construct with `when` and `merge` ones.
*
* [x1, ..., xn = if c then e_l else e_r;]
@@ -244,7 +421,7 @@ let pass_linearization_pre verbose debug =
| [TInt] -> IVar nvar
| [TBool] -> BVar nvar
| [TReal] -> RVar nvar
| _ -> failwith "Should not happened." in
| _ -> failwith "Should not happened. (pass_linearization_pre)" in
let neq_patt: t_varlist = (t, [nvar]) in
let neq_expr: t_expression = e in
let vars = varlist_concat (t, [nvar]) vars in
@@ -749,7 +926,7 @@ let pass_typing verbose debug ast =
else None
in aux ast
let check_automata_validity verbos debug =
let check_automata_validity verbose debug =
let check_automaton_branch_vars automaton =
let (init, states) = automaton in
let left_side = Hashtbl.create 10 in
@@ -774,8 +951,11 @@ let check_automata_validity verbos debug =
end
in
let aux node =
try
List.iter check_automaton_branch_vars node.n_automata;
Some node
with
| PassExn err -> (verbose err; None)
in
node_pass aux
@@ -922,112 +1102,150 @@ let automata_translation_pass verbose debug =
eqs@eqs_end, (ty@ty_end, vars@vars_end)
in
let aux node =
try
let eqs, (ty, vars) = iter_automata node.n_automata in
let (ty_old, vars_old) = node.n_local_vars in
Some { node with n_local_vars = (ty@ty_old, vars@vars_old); n_equations = node.n_equations@eqs; n_automata = []}
with
|PassExn err -> (verbose err; None)
in
node_pass aux
let clock_unification_pass verbose debug ast =
let failure str = raise (PassExn ("Failed to unify clocks: "^str)) in
let known_clocks = Hashtbl.create 100 in
let used = Hashtbl.create 100 in (*keep track of variables that appear on right side of equation*)
let changed = ref false in
let find_clock_var var =
match Hashtbl.find_opt known_clocks var with
| None ->
begin
match var with
| BVar(name)
| IVar(name)
| RVar(name) -> raise (PassExn ("Cannot find clock of variable "^name) )
end
| Some c -> c
let rec count_not e acc = match e with
| EVar([TBool], var) -> acc, e
| EConst([TBool], cons) -> acc, e
| EMonOp([TBool], MOp_not, e) -> count_not e (acc + 1)
| _ -> acc, e
in
let rec compute_clock_exp exp = match exp with
| EConst(_, _) -> [Base]
| EVar(_, var) -> find_clock_var var
| EMonOp(_, MOp_pre, _) -> [Base]
| EMonOp(_, _, e) -> compute_clock_exp e
let verify_when e1 e2 =
let n1, var1 = count_not e1 0
and n2, var2 = count_not e2 0 in
if n1 mod 2 <> n2 mod 2 || var1 <> var2 then
raise (PassExn "verify_when failure")
in
let get_var_name var = match var with
| RVar(name)
| BVar(name)
| IVar(name) -> name
in
let rec clk_to_string clk = match clk with
| Base -> "Base"
| Unknown -> "Unknown"
| On(clk, exp) ->
let n, var = count_not exp 0 in
let s = if n mod 2 = 1 then "not " else "" in
let v = match var with |EVar(_, var) -> get_var_name var | EConst(_, CBool(false)) -> "false" |_ -> "true" in
(clk_to_string clk) ^ " on " ^ s ^ v
in
let add_clock var clock =
match Hashtbl.find known_clocks var with
| Unknown -> changed := true; (debug ("Found clock for "^(get_var_name var)^": "^(clk_to_string clock))); Hashtbl.replace known_clocks var clock
| c when c = clock -> ()
| c -> raise (PassExn ("Clock conflict "^(get_var_name var) ^" "^(clk_to_string c) ^ " " ^ (clk_to_string clock)))
in
let rec update_clock exp clk = match exp with
| EConst(_, _) -> ()
| EVar(_, var) -> add_clock var clk; Hashtbl.replace used var var
| EMonOp(_, _, e) -> update_clock e clk
| EComp(_, _, e1, e2)
| EReset(_, e1, e2)
| EBinOp(_, _, e1, e2) ->
begin
let c1 = compute_clock_exp e1
and c2 = compute_clock_exp e2 in
if c1 <> c2 then
failure "Binop"
else
c1
end
| EWhen(_, e1, e2) ->
begin
match compute_clock_exp e1 with
| [c1] -> [On (c1, e2)]
| _ -> failure "When"
end
| EBinOp(_, _, e1, e2) -> update_clock e1 clk; update_clock e2 clk
| ETriOp(_, TOp_merge, e1, e2, e3) ->
begin
let c1 = compute_clock_exp e1
and c2 = compute_clock_exp e2
and c3 = compute_clock_exp e3 in
match c1, c2, c3 with
| [c1], [On(cl2, e2)], [On(cl3, e3)] ->
begin
if cl2 <> c1 || cl3 <> c1 then
failure "Triop clocks"
else match e2, e3 with
| EMonOp(_, MOp_not, e), _ when e = e3 -> [c1]
| _, EMonOp(_, MOp_not, e) when e = e2 -> [c1]
| _ -> failure "Triop condition"
end
| _ -> failure ("Merge format")
end
update_clock e1 clk;
update_clock e2 (On(clk, e1));
update_clock e3 (On(clk, EMonOp([TBool], MOp_not, e1)))
| ETriOp(_, TOp_if, e1, e2, e3) ->
let (* Unused: c1 = compute_clock_exp e1
and*) c2 = compute_clock_exp e2
and c3 = compute_clock_exp e3 in
if c2 <> c3 then
failure "If clocks"
else c2
| ETuple(_, explist) -> List.concat_map compute_clock_exp explist
| EApp(_, node, e) ->
let rec aux_app clk_list = match clk_list with
| [] -> raise (PassExn "Node called with no argument provided")
| [cl] -> cl
| t::q -> if t = (aux_app q) then t else failure "App diff clocks"
and mult_clk cl out_list = match out_list with
| [] -> []
| t::q -> cl::(mult_clk cl q)
in
mult_clk (aux_app (compute_clock_exp e)) (snd node.n_outputs)
(* The 3 expressions should have the same clock *)
begin
update_clock e1 clk;
update_clock e2 clk;
update_clock e3 clk
end
| ETuple(_, explist) -> List.iter (fun e -> update_clock e clk) explist
| EApp(_, node, e) -> update_clock e clk
| EWhen(_, e1, e2) ->
match clk with
| On(clk2, e) -> verify_when e e2; update_clock e1 clk2
| _ -> raise (PassExn "Clock unification failure: when")
in
let rec compute_eq_clock eq =
let rec step vars clks = match vars, clks with
| [], [] -> ()
| [], c::q -> raise (PassExn "Mismatch between clock size")
| v::t, c::q -> Hashtbl.replace known_clocks v [c]; step t q
| l, [] -> raise (PassExn "Mismatch between clock size")
let rec propagate_clock eqs =
let rec step ((ty, vars), exp)= match vars with
| [] -> ()
| v::t -> let clk = Hashtbl.find known_clocks v in
begin
if clk <> Unknown then update_clock exp clk
else ();
step ((ty, t), exp)
end
in
let (_, vars), exp = eq in
let clk = compute_clock_exp exp in
step vars clk
List.iter step eqs
in
let rec iter_til_stable eqs =
changed := false;
propagate_clock eqs;
if !changed then
iter_til_stable eqs
in
let check_unification node =
let (_, node_inputs) = node.n_inputs in
let rec check_vars_aux acc = match acc with
| [(v, c)] -> if c = Unknown && (Hashtbl.mem used v) then raise (PassExn ("Clock unification failure: Unkwown clock for "^(get_var_name v))) else c
| (v, t)::q -> let c = check_vars_aux q in
if c <> t then raise (PassExn "Clock unification failure: Non homogeneous equation") else c
| [] -> raise (PassExn "Clock unification failure: empty equation")
in
let rec check_vars ((ty, vars), exp) acc = match vars with
| [] -> let _ = check_vars_aux acc in ()
| v::t -> check_vars ((ty, t), exp) ((v, Hashtbl.find known_clocks v)::acc)
in
let rec check_inputs inputs = match inputs with
| [] -> ()
| i::q -> let c = Hashtbl.find known_clocks i in
match c with
| On(_, e) -> let _, var = count_not e 0 in
begin
match var with
| EConst(_, _) -> ()
| EVar(_, var) -> if not (List.mem var node_inputs) then raise (PassExn "Clock unification failure: input clock depends on non input clock")
else check_inputs q
| _ -> failwith "Should not happen. (clock_unification)"
end
| _ -> check_inputs q
in
(*Check that all variables used have a clock
and that inputs clocks do not depend on local vars or outputs*)
List.iter (fun eq -> check_vars eq []) node.n_equations;
check_inputs node_inputs;
in
let compute_clock_node n =
begin
Hashtbl.clear known_clocks;
List.iter (fun v -> Hashtbl.replace known_clocks v [Base]) (
snd n.n_inputs); (* Initializing inputs to base clock *)
List.iter compute_eq_clock n.n_equations;
if not (List.for_all (fun v -> (Hashtbl.find known_clocks v) = [Base]) (
snd n.n_outputs)) then failure "Outputs" (*Checking that the node's output are on base clock *)
else
List.iter (fun v -> Hashtbl.replace known_clocks v Unknown) (
snd n.n_inputs); (* Initializing inputs to Unknown clock *)
List.iter (fun v -> Hashtbl.replace known_clocks v Unknown) (
snd n.n_local_vars); (* Initializing local variables to Unknown clock *)
List.iter (fun v -> Hashtbl.replace known_clocks v Base) (
snd n.n_outputs); (* Initializing outputs to base clock *)
iter_til_stable n.n_equations;
(* catch potential errors and test for unification *)
check_unification n;
Some n
end
in node_pass compute_clock_node ast

View File

@@ -16,3 +16,10 @@ let
tmp = aux (a+b, i);
tel
node test (u, v: int; c: bool) returns (o: int);
var x, y: int; b: bool;
let
x = merge c u v;
o = 2 * x;
tel

View File

@@ -11,7 +11,7 @@ let
o = (not (not (l1 = l2))) and (l1 = l2) and true;
tel
node auto (i: int) returns (o : int);
node main (i: int) returns (o : int);
var x, y:int;
let
automaton

View File

@@ -1,14 +1,13 @@
node test (i: int) returns (o: int);
var x, y: int;
node test (i: real) returns (o: real);
var x, y: real;
let
x = (1 / i) when (i <> 0);
y = 0 when (not (i <> 0));
o = merge (i <> 0) x y;
x = (1.0 / i) when (i <> 0.0);
y = 0.0 when (not (i <> 0.0));
o = merge (i <> 0.0) x y;
tel
node main (i: int) returns (o: int);
var garbage: int;
node main (i: real) returns (o: real);
let
garbage = test(0);
o = test(1);
-- The idea is to pass `0.0` as the input to acknowledge that the division by zero isn't computed.
o = test(i);
tel