\documentclass{beamer} \usepackage{tikz} \usetikzlibrary{positioning} \usetheme{Darmstadt} \begin{document} \title{Presentation of our Lustre-to-C compiler} %\subtitle{} \date{16 December 2022} \author{Benjamin Loison, Arnaud Daby-Seesaram, Antoine Grimod} \frame{\titlepage} \section{Structure of the compiler} \begin{frame}{Main ideas} \begin{figure} \begin{tikzpicture} \node (sf) {Source file}; \node[right =2cm of sf] (ast) {Typed AST}; \node[right =2cm of ast] (C) {C program}; \draw (sf) edge[->] node[above] {parser} (ast) (ast) edge[->] node[above] {compiler} (C); \end{tikzpicture} \caption{Structure of the compiler} \end{figure} \end{frame} \begin{frame}{Testing} \begin{block}{Passes} The passes can be split into: \begin{itemize} \item those checking the program validity \item those modifying the AST of the program \end{itemize} \end{block} \end{frame} \section{Typed AST} \subsection{First attempt using GADTs} \begin{frame} \begin{block}{Main idea} Using GADTs to represent nodes and expressions allows to ensure the well-typedness of a program. \end{block} \begin{figure} \centering \includegraphics[width=.75\textwidth]{imgs/gadt.png} \end{figure} \end{frame} \begin{frame} \begin{block}{Pros of using GADTs} \begin{itemize} \item Any term of the GADT represents a well-typed program \item Extending the language to support more types consists of adding constructors to variables and constants \item The types are easy to read and understand \end{itemize} \end {block} \begin{block}{Cons of using GADTs} \begin{itemize} \item They cannot be dynamically generated (hence it is impossible to implement a parser that gives back a GADT) \item One should think about the isomorphism between \texttt{a $\ast$ (b $\ast$ c)} and \texttt{(a $\ast$ b) $\ast$ c}. \end{itemize} \end{block} \end{frame} \subsection{Second attempt: using explicit types in the variables, expressions, \dots{} constructors} \begin{frame} \begin{block}{Idea} Explicitly collect typing information while parsing. \end{block} \begin{figure} \centering \includegraphics[width=.6\textwidth]{imgs/explicit_types.png} \end{figure} \end{frame} \begin{frame} \begin{block}{Pros of using explicit types} \begin{itemize} \item Programs can be built dynamically, hence a parser can be written \item While parsing, the parser has all the required information on the sub-variables/nodes/expressions to check the well-typedness \end{itemize} \end{block} \begin{block}{Cons of these definitions} \begin{itemize} \item The typing information on terms is very redundant. \item The rejection of ill-typed programs depends on the correctness of the parser \end{itemize} \end{block} \end{frame} \section{Passes} \begin{frame}{Passes} \begin{block}{Sanity checks} \begin{itemize} \item Check the well-typedness of a program \item Check that there are no assignment conflicts in a programs \end{itemize} \end{block} \begin{block}{AST modification} \begin{itemize} \item Rewrite automata into \texttt{if-then-else} constructs \item Linearization of the equations \item (no longer required) Push the \texttt{pre} to variables \end{itemize} \end{block} \end{frame} \section{Translation to C} \begin{frame} \texttt{ast\_to\_c.ml} architecture similar to Arnaud's AST pretty-printer. \pause For instance, go from \texttt{counting.lus} to \texttt{counting.c}. \pause Use of three tricks, as our compiler only manages \texttt{bool}s, \texttt{int}s and \texttt{float}s: \begin{enumerate} \item \texttt{0} can be interpreted as a \texttt{bool}, an \texttt{int} and a \texttt{float} \pause \item A \texttt{float} correctly encode \texttt{bool}s (\texttt{true} and \texttt{false}) and \texttt{int}s (between $[-2^{24} + 1; 2^{24} + 1]$) \pause \item To run an assignment of \texttt{value} to \texttt{variable} within the condition of a \texttt{if} and also make the cases of the \texttt{if} depends on a condition \texttt{condition}, we can do \texttt{if(((variable = value) \&\& false) || condition)}\\ \pause We can also use this trick to execute an assignment and \textit{return} a value \texttt{value\_to\_return} without using any \texttt{;}, by using \texttt{((variable = value) || true) ? value\_to\_return : 0} (thanks to the first trick) \end{enumerate} \end{frame} \begin{frame} \begin{itemize} \item \begin{itemize} \item \texttt{pp\_varlist (Base | Arg | Dec)} \item \texttt{pp\_retvarlist} \item \texttt{pp\_prevarlist} \item \texttt{pp\_asnprevarlist} \end{itemize} \pause \item \texttt{when} implementation error: division by zero for instance \pause \item \texttt{->} \pause \item \texttt{pre} \pause \item \texttt{reset} \pause \item Functions returning tuples thanks to Arnaud's linearization only have to deal with \texttt{(a0, a1, ..., an) = return\_tuple\_a0\_a1\_dots\_an(0)} \end{itemize} \end{frame} \section{Tests} \begin{frame}{Tests} \begin{block}{testing methods} We thought of three testing methods: \begin{itemize} \item manual testing of our functionalities \item run the sanity-checks-passes after any AST-altering pass \item simulation of the nodes (aborted) \end{itemize} \end{block} \end{frame} \section{Possible improvements} \begin{frame}{Improvements} \begin{itemize} \item Increase the expressivity of the accepted programs \item Improve the complexity of the different passes \begin{itemize} \item Group neighbour passes of the same type (node-, expression or equation-pass). \end{itemize} \item \dots{} \end{itemize} \end{frame} \end{document}