853 lines
30 KiB
OCaml
853 lines
30 KiB
OCaml
(** This file contains simplification passes for our Lustre-like AST *)
|
|
|
|
open Ast
|
|
open Passes_utils
|
|
open Utils
|
|
|
|
|
|
|
|
(** [pass_if_removal] replaces the `if` construct with `when` and `merge` ones.
|
|
*
|
|
* [x1, ..., xn = if c then e_l else e_r;]
|
|
* is replaced by:
|
|
* (t1, ..., tn) = e_l;
|
|
* (u1, ..., un) = e_r;
|
|
* (v1, ..., vn) = (t1, ..., tn) when c;
|
|
* (w1, ..., wn) = (u1, ..., un) when (not c);
|
|
* (x1, ..., xn) = merge c (v1, ..., vn) (w1, ..., wn);
|
|
*
|
|
* Note that the first two equations (before the use of when) is required in
|
|
* order to have the expressions active at each step.
|
|
*)
|
|
let pass_if_removal verbose debug =
|
|
let varcount = ref 0 in (** new variables are called «_ifrem[varcount]» *)
|
|
(** Males a pattern (t_varlist) of fresh variables matching the type t *)
|
|
let make_patt t: t_varlist =
|
|
(t, List.fold_right
|
|
(fun ty acc ->
|
|
let nvar: ident = Format.sprintf "_ifrem%d" !varcount in
|
|
let nvar =
|
|
match ty with
|
|
| TInt -> IVar nvar
|
|
| TReal -> RVar nvar
|
|
| TBool -> BVar nvar
|
|
in
|
|
incr varcount;
|
|
nvar :: acc)
|
|
t [])
|
|
in
|
|
(** If a tuple contains a single element, it should not be. *)
|
|
let simplify_tuple t =
|
|
match t with
|
|
| ETuple (t, [elt]) -> elt
|
|
| _ -> t
|
|
in
|
|
(** For each equation, build a list of equations and a new list of local
|
|
* variables as well as an updated version of the original equation. *)
|
|
let rec aux_eq vars eq: t_eqlist * t_varlist * t_equation =
|
|
let patt, expr = eq in
|
|
match expr with
|
|
| EConst _ | EVar _ -> [], vars, eq
|
|
| EMonOp (t, op, e) ->
|
|
let eqs, vars, (patt, e) = aux_eq vars (patt, e) in
|
|
eqs, vars, (patt, EMonOp (t, op, e))
|
|
| EBinOp (t, op, e, e') ->
|
|
let eqs, vars, (_, e) = aux_eq vars (patt, e) in
|
|
let eqs', vars, (_, e') = aux_eq vars (patt, e') in
|
|
eqs @ eqs', vars, (patt, EBinOp (t, op, e, e'))
|
|
| ETriOp (t, TOp_if, e, e', e'') ->
|
|
let eqs, vars, (_, e) = aux_eq vars (patt, e) in
|
|
let eqs', vars, (_, e') = aux_eq vars (patt, e') in
|
|
let eqs'', vars, (_, e'') = aux_eq vars (patt, e'') in
|
|
let patt_l: t_varlist = make_patt t in
|
|
let patt_r: t_varlist = make_patt t in
|
|
let patt_l_when: t_varlist = make_patt t in
|
|
let patt_r_when: t_varlist = make_patt t in
|
|
let expr_l: t_expression =
|
|
simplify_tuple
|
|
(ETuple
|
|
(fst patt_l, List.map (fun v -> EVar (type_var v, v)) (snd patt_l)))
|
|
in
|
|
let expr_r: t_expression =
|
|
simplify_tuple
|
|
(ETuple
|
|
(fst patt_r, List.map (fun v -> EVar (type_var v, v)) (snd patt_r)))
|
|
in
|
|
let expr_l_when: t_expression =
|
|
simplify_tuple
|
|
(ETuple
|
|
(fst patt_l_when, List.map (fun v -> EVar (type_var v, v))
|
|
(snd patt_l_when)))
|
|
in
|
|
let expr_r_when: t_expression =
|
|
simplify_tuple
|
|
(ETuple
|
|
(fst patt_r_when, List.map (fun v -> EVar (type_var v, v))
|
|
(snd patt_r_when)))
|
|
in
|
|
let equations: t_eqlist =
|
|
[(patt_l, e');
|
|
(patt_r, e'');
|
|
(patt_l_when,
|
|
EWhen (t, expr_l, e));
|
|
(patt_r_when,
|
|
EWhen (t,
|
|
expr_r,
|
|
(EMonOp (type_exp e, MOp_not, e))))]
|
|
@ eqs @ eqs' @eqs'' in
|
|
let vars: t_varlist =
|
|
varlist_concat
|
|
vars
|
|
(varlist_concat patt_l_when (varlist_concat patt_r_when
|
|
(varlist_concat patt_r patt_l))) in
|
|
let expr =
|
|
ETriOp (t, TOp_merge, e, expr_l_when, expr_r_when) in
|
|
equations, vars, (patt, expr)
|
|
| ETriOp (t, op, e, e', e'') ->
|
|
let eqs, vars, (_, e) = aux_eq vars (patt, e) in
|
|
let eqs', vars, (_, e') = aux_eq vars (patt, e') in
|
|
let eqs'', vars, (_, e'') = aux_eq vars (patt, e'') in
|
|
eqs @ eqs' @ eqs'', vars, (patt, ETriOp (t, op, e, e', e''))
|
|
| EComp (t, op, e, e') ->
|
|
let eqs, vars, (_, e) = aux_eq vars (patt, e) in
|
|
let eqs', vars, (_, e') = aux_eq vars (patt, e') in
|
|
eqs @ eqs', vars, (patt, EComp (t, op, e, e'))
|
|
| EWhen (t, e, e') ->
|
|
let eqs, vars, (_, e) = aux_eq vars (patt, e) in
|
|
let eqs', vars, (_, e') = aux_eq vars (patt, e') in
|
|
eqs @ eqs', vars, (patt, EWhen (t, e, e'))
|
|
| EReset (t, e, e') ->
|
|
let eqs, vars, (_, e) = aux_eq vars (patt, e) in
|
|
let eqs', vars, (_, e') = aux_eq vars (patt, e') in
|
|
eqs @ eqs', vars, (patt, EReset (t, e, e'))
|
|
| ETuple (t, l) ->
|
|
let eqs, vars, l, _ =
|
|
List.fold_right
|
|
(fun e (eqs, vars, l, remaining_patt) ->
|
|
let patt_l, patt_r = split_patt remaining_patt e in
|
|
let eqs', vars, (_, e) = aux_eq vars (patt_l, e) in
|
|
eqs' @ eqs, vars, (e :: l), patt_r)
|
|
l ([], vars, [], patt) in
|
|
eqs, vars, (patt, ETuple (t, l))
|
|
| EApp (t, n, e) ->
|
|
let eqs, vars, (_, e) = aux_eq vars (patt, e) in
|
|
eqs, vars, (patt, EApp (t, n, e))
|
|
in
|
|
(** For each node, apply the previous function to all equations. *)
|
|
let aux_if_removal node =
|
|
let new_equations, new_locvars =
|
|
List.fold_left
|
|
(fun (eqs, vars) eq ->
|
|
let eqs', vars, eq = aux_eq vars eq in
|
|
eq :: eqs' @ eqs, vars)
|
|
([], node.n_local_vars) node.n_equations
|
|
in
|
|
Some { node with n_equations = new_equations; n_local_vars = new_locvars }
|
|
in
|
|
node_pass aux_if_removal
|
|
|
|
|
|
|
|
(** [pass_linearization_pre] makes sure that all pre constructs in the program
|
|
* are applied to variables.
|
|
* This is required, since the pre construct is translated into a variable in
|
|
* the final C code. *)
|
|
let pass_linearization_pre verbose debug =
|
|
(** [node_lin] linearises a single node. *)
|
|
let node_lin (node: t_node): t_node option =
|
|
(** [pre_aux_expression] takes an expression and returns:
|
|
* - a list of additional equations
|
|
* - the new list of local variables
|
|
* - an updated version of the original expression *)
|
|
let rec pre_aux_expression vars expr: t_eqlist * t_varlist * t_expression =
|
|
match expr with
|
|
| EVar _ -> [], vars, expr
|
|
| EMonOp (t, op, e) ->
|
|
begin
|
|
match op, e with
|
|
| MOp_pre, EVar _ ->
|
|
let eqs, vars, e = pre_aux_expression vars e in
|
|
eqs, vars, EMonOp (t, op, e)
|
|
| MOp_pre, _ ->
|
|
let eqs, vars, e = pre_aux_expression vars e in
|
|
let nvar: string = fresh_var_name vars 6 in
|
|
let nvar = match t with
|
|
| [TInt] -> IVar nvar
|
|
| [TBool] -> BVar nvar
|
|
| [TReal] -> RVar nvar
|
|
| _ -> failwith "Should not happened." in
|
|
let neq_patt: t_varlist = (t, [nvar]) in
|
|
let neq_expr: t_expression = e in
|
|
let vars = varlist_concat (t, [nvar]) vars in
|
|
(neq_patt, neq_expr) :: eqs, vars, EMonOp (t, MOp_pre, EVar (t, nvar))
|
|
| _, _ ->
|
|
let eqs, vars, e = pre_aux_expression vars e in
|
|
eqs, vars, EMonOp (t, op, e)
|
|
end
|
|
| EBinOp (t, op, e, e') ->
|
|
let eqs, vars, e = pre_aux_expression vars e in
|
|
let eqs', vars, e' = pre_aux_expression vars e' in
|
|
eqs @ eqs', vars, EBinOp (t, op, e, e')
|
|
| ETriOp (t, op, e, e', e'') -> (** Do we always want a new var here ? *)
|
|
let eqs, vars, e = pre_aux_expression vars e in
|
|
let nvar: string = fresh_var_name vars 6 in
|
|
let nvar: t_var = BVar nvar in
|
|
let neq_patt: t_varlist = ([TBool], [nvar]) in
|
|
let neq_expr: t_expression = e in
|
|
let vars = varlist_concat vars (neq_patt) in
|
|
let eqs', vars, e' = pre_aux_expression vars e' in
|
|
let eqs'', vars, e'' = pre_aux_expression vars e'' in
|
|
(neq_patt, neq_expr) :: eqs @ eqs' @ eqs'', vars, ETriOp (t, op, e, e', e'')
|
|
| EComp (t, op, e, e') ->
|
|
let eqs, vars, e = pre_aux_expression vars e in
|
|
let eqs', vars, e' = pre_aux_expression vars e' in
|
|
eqs @ eqs', vars, EComp (t, op, e, e')
|
|
| EWhen (t, e, e') ->
|
|
let eqs, vars, e = pre_aux_expression vars e in
|
|
let eqs', vars, e' = pre_aux_expression vars e' in
|
|
eqs @ eqs', vars, EWhen (t, e, e')
|
|
| EReset (t, e, e') ->
|
|
let eqs, vars, e = pre_aux_expression vars e in
|
|
let eqs', vars, e' = pre_aux_expression vars e' in
|
|
eqs @ eqs', vars, EReset (t, e, e')
|
|
| EConst _ -> [], vars, expr
|
|
| ETuple (t, l) ->
|
|
let eqs, vars, l = List.fold_right
|
|
(fun e (eqs, vars, l) ->
|
|
let eqs', vars, e = pre_aux_expression vars e in
|
|
eqs' @ eqs, vars, (e :: l))
|
|
l ([], vars, []) in
|
|
eqs, vars, ETuple (t, l)
|
|
| EApp (t, n, e) ->
|
|
let eqs, vars, e = pre_aux_expression vars e in
|
|
eqs, vars, EApp (t, n, e)
|
|
in
|
|
(** Applies the previous function to the expressions of every equation. *)
|
|
let new_equations, new_locvars =
|
|
List.fold_left
|
|
(fun (eqs, vars) (patt, expr) ->
|
|
let eqs', vars, expr = pre_aux_expression vars expr in
|
|
(patt, expr)::eqs' @ eqs, vars)
|
|
([], node.n_local_vars)
|
|
node.n_equations
|
|
in
|
|
Some { node with n_local_vars = new_locvars; n_equations = new_equations }
|
|
in
|
|
node_pass node_lin
|
|
|
|
|
|
|
|
(** [pass_linearization_tuples] transforms expressions of the form
|
|
* (x1, ..., xn) = (e1, ..., em);
|
|
* into:
|
|
* p1 = e1;
|
|
* ...
|
|
* pm = em;
|
|
* where flatten (p1, ..., pm) = x1, ..., xn
|
|
*
|
|
* Idem for tuples hidden behind merges and when:
|
|
* patt = (...) when c;
|
|
* patt = merge c (...) (...);
|
|
*)
|
|
let pass_linearization_tuples verbose debug ast =
|
|
(** [split_tuple] takes an equation and produces an equation list
|
|
* corresponding to the [pi = ei;] above. *)
|
|
let rec split_tuple (eq: t_equation): t_eqlist =
|
|
let patt, expr = eq in
|
|
match expr with
|
|
| ETuple (_, expr_h :: expr_t) ->
|
|
begin
|
|
let t_l = type_exp expr_h in
|
|
let patt_l, patt_r = list_select (List.length t_l) (snd patt) in
|
|
let t_r = List.flatten (List.map type_var patt_r) in
|
|
((t_l, patt_l), expr_h) ::
|
|
split_tuple ((t_r, patt_r), ETuple (t_r, expr_t))
|
|
end
|
|
| ETuple (_, []) -> []
|
|
| _ -> [eq]
|
|
in
|
|
(** For each node, apply the previous function to all equations.
|
|
* It builds fake equations in order to take care of tuples behind
|
|
* merge/when. *)
|
|
let aux_linearization_tuples node =
|
|
let new_equations = List.flatten
|
|
(List.map
|
|
(fun eq ->
|
|
match snd eq with
|
|
| ETuple _ -> split_tuple eq
|
|
| EWhen (t, ETuple (_, l), e') ->
|
|
List.map
|
|
(fun (patt, expr) -> (patt, EWhen (type_exp expr, expr, e')))
|
|
(split_tuple (fst eq, ETuple (t, l)))
|
|
| ETriOp (t, TOp_merge, c, ETuple (_, l), ETuple (_, l')) ->
|
|
begin
|
|
if List.length l <> List.length l'
|
|
|| List.length t <> List.length (snd (fst eq))
|
|
then raise (PassExn "Error while merging tuples.")
|
|
else
|
|
fst
|
|
(List.fold_left2
|
|
(fun (eqs, remaining_patt) el er ->
|
|
let patt, remaining_patt = split_patt remaining_patt el in
|
|
let t = type_exp el in
|
|
(patt, ETriOp (t, TOp_merge, c, el, er))
|
|
:: eqs, remaining_patt)
|
|
([], fst eq) l l')
|
|
end
|
|
| _ -> [eq])
|
|
node.n_equations) in
|
|
Some { node with n_equations = new_equations }
|
|
in
|
|
try node_pass aux_linearization_tuples ast with
|
|
| PassExn err -> (debug err; None)
|
|
|
|
|
|
|
|
(** [pass_linearization_app] makes sure that any argument to a function is
|
|
* either a variable, or of the form [pre _] (which will be translated as a
|
|
* variable in the final C code. *)
|
|
let pass_linearization_app verbose debug =
|
|
let applin_count = ref 0 in (* new variables are called «_applin[varcount]» *)
|
|
(** [aux_expr] recursively explores the AST in order to find applications, and
|
|
* adds the requires variables and equations. *)
|
|
let rec aux_expr vars expr: t_eqlist * t_varlist * t_expression =
|
|
match expr with
|
|
| EConst _ | EVar _ -> [], vars, expr
|
|
| EMonOp (t, op, expr) ->
|
|
let eqs, vars, expr = aux_expr vars expr in
|
|
eqs, vars, EMonOp (t, op, expr)
|
|
| EBinOp (t, op, e, e') ->
|
|
let eqs, vars, e = aux_expr vars e in
|
|
let eqs', vars, e' = aux_expr vars e' in
|
|
eqs @ eqs', vars, EBinOp (t, op, e, e')
|
|
| ETriOp (t, op, e, e', e'') ->
|
|
let eqs, vars, e = aux_expr vars e in
|
|
let eqs', vars, e' = aux_expr vars e' in
|
|
let eqs'', vars, e'' = aux_expr vars e'' in
|
|
eqs @ eqs' @ eqs'', vars, ETriOp (t, op, e, e', e'')
|
|
| EComp (t, op, e, e') ->
|
|
let eqs, vars, e = aux_expr vars e in
|
|
let eqs', vars, e' = aux_expr vars e' in
|
|
eqs @ eqs', vars, EComp (t, op, e, e')
|
|
| EWhen (t, e, e') ->
|
|
let eqs, vars, e = aux_expr vars e in
|
|
let eqs', vars, e' = aux_expr vars e' in
|
|
eqs @ eqs', vars, EWhen (t, e, e')
|
|
| EReset (t, e, e') ->
|
|
let eqs, vars, e = aux_expr vars e in
|
|
let eqs', vars, e' = aux_expr vars e' in
|
|
eqs @ eqs', vars, EReset (t, e, e')
|
|
| ETuple (t, l) ->
|
|
let eqs, vars, l =
|
|
List.fold_right
|
|
(fun e (eqs, vars, l) ->
|
|
let eqs', vars, e = aux_expr vars e in
|
|
eqs' @ eqs, vars, (e :: l))
|
|
l ([], vars, []) in
|
|
eqs, vars, ETuple (t, l)
|
|
| EApp (tout, n, ETuple (tin, l)) ->
|
|
let eqs, vars, l =
|
|
List.fold_right
|
|
(fun e (eqs, vars, l) ->
|
|
let eqs', vars, e = aux_expr vars e in
|
|
match e with
|
|
| EVar _ | EMonOp (_, MOp_pre, _) -> (** No need for a new var. *)
|
|
eqs' @ eqs, vars, (e :: l)
|
|
| _ -> (** Need for a new var. *)
|
|
let ty = match type_exp e with
|
|
| [ty] -> ty
|
|
| _ -> failwith "[passes.ml] One should not provide
|
|
tuples as arguments to an auxiliary node."
|
|
in
|
|
let nvar: string = Format.sprintf "_applin%d" !applin_count in
|
|
incr applin_count;
|
|
let nvar: t_var =
|
|
match ty with
|
|
| TBool -> BVar nvar
|
|
| TInt -> IVar nvar
|
|
| TReal -> RVar nvar
|
|
in
|
|
let neq_patt: t_varlist = ([ty], [nvar]) in
|
|
let neq_expr: t_expression = e in
|
|
let vars = varlist_concat neq_patt vars in
|
|
(neq_patt, neq_expr)::eqs'@eqs, vars, EVar([ty], nvar) :: l)
|
|
l ([], vars, []) in
|
|
eqs, vars, EApp (tout, n, ETuple (tin, l))
|
|
| EApp _ -> failwith "[passes.ml] Should not happened (parser)"
|
|
in
|
|
(** [aux_linearization_app] applies the previous function to every equation *)
|
|
let aux_linearization_app node =
|
|
let new_equations, new_locvars =
|
|
List.fold_left
|
|
(fun (eqs, vars) eq ->
|
|
let eqs', vars, expr = aux_expr vars (snd eq) in
|
|
(fst eq, expr) :: eqs' @ eqs, vars)
|
|
([], node.n_local_vars)
|
|
node.n_equations
|
|
in
|
|
Some { node with n_local_vars = new_locvars; n_equations = new_equations }
|
|
in
|
|
node_pass aux_linearization_app
|
|
|
|
|
|
|
|
(** [sanity_pass_assignment_unicity] makes sure that there is at most one
|
|
* equation defining each variable (and that no equation tries to redefine an
|
|
* input).
|
|
*
|
|
* This is required, since the equations are not ordered in Lustre. *)
|
|
let sanity_pass_assignment_unicity verbose debug : t_nodelist -> t_nodelist option =
|
|
(** For each node, test the node. *)
|
|
let aux (node: t_node) : t_node option =
|
|
let incr_aux h n =
|
|
match Hashtbl.find_opt h n with
|
|
| None -> raise (PassExn "should not happened.")
|
|
| Some num -> Hashtbl.replace h n (num + 1)
|
|
in
|
|
let incr_eq h (((_, patt), _): t_equation) =
|
|
List.iter (fun v -> incr_aux h (name_of_var v)) patt
|
|
in
|
|
let rec incr_eqlist h = function
|
|
| [] -> ()
|
|
| eq :: eqs -> (incr_eq h eq; incr_eqlist h eqs)
|
|
in
|
|
let incr_branch h (State (_, eqs, _, _): t_state) = incr_eqlist h eqs in
|
|
let incr_automata h ((_, states): t_automaton) =
|
|
let acc = Hashtbl.copy h in
|
|
List.iter
|
|
(fun st ->
|
|
let h_st = Hashtbl.copy h in
|
|
incr_branch h_st st;
|
|
Hashtbl.iter
|
|
(fun varname num' ->
|
|
match Hashtbl.find_opt acc varname with
|
|
| None -> failwith "no!"
|
|
| Some num -> Hashtbl.replace acc varname (Int.max num num')
|
|
) h_st) states;
|
|
Hashtbl.iter (fun v n -> Hashtbl.replace h v n) acc
|
|
in
|
|
let check_now h : bool=
|
|
Hashtbl.fold
|
|
(fun varname num old_res ->
|
|
if num > 1
|
|
then (verbose (Format.asprintf "%s initialized twice!" varname); false)
|
|
else old_res) h true
|
|
in
|
|
(*let purge_initialized h =
|
|
Hashtbl.iter
|
|
(fun varname num ->
|
|
if num > 0
|
|
then (verbose (Format.asprintf "Purging %s" varname); Hashtbl.remove h varname)
|
|
else ()) h
|
|
in*)
|
|
let h = Hashtbl.create Config.maxvar in
|
|
let add_var n v =
|
|
match v with
|
|
| IVar s -> Hashtbl.add h s n
|
|
| BVar s -> Hashtbl.add h s n
|
|
| RVar s -> Hashtbl.add h s n
|
|
in
|
|
let add_var_in = add_var 1 in
|
|
let add_var_loc = add_var 0 in
|
|
List.iter add_var_loc (snd node.n_outputs);
|
|
List.iter add_var_loc (snd node.n_local_vars);
|
|
List.iter add_var_in (snd node.n_inputs);
|
|
(** Usual Equations *)
|
|
incr_eqlist h node.n_equations;
|
|
if check_now h = false
|
|
then None
|
|
else
|
|
begin
|
|
List.iter (* 0. *) (incr_automata h) node.n_automata;
|
|
if check_now h
|
|
then Some node
|
|
else None
|
|
end
|
|
(** never purge -> failwith never executed! purge_initialized h; *)
|
|
in
|
|
node_pass aux
|
|
|
|
let rec tpl debug ((pat, exp): t_equation) =
|
|
match exp with
|
|
| ETuple (_, hexps :: texps) ->
|
|
debug "An ETuple has been recognized, inlining...";
|
|
let p1, p2 =
|
|
list_select
|
|
(List.length (type_exp hexps))
|
|
(snd pat) in
|
|
let t1 = List.flatten (List.map type_var p1) in
|
|
let t2 = List.flatten (List.map type_var p2) in
|
|
((t1, p1), hexps)
|
|
:: (tpl debug ((t2, p2),
|
|
ETuple (List.flatten (List.map type_exp texps), texps)))
|
|
| ETuple (_, []) -> []
|
|
| _ -> [(pat, exp)]
|
|
|
|
let pass_eq_reordering verbose debug ast =
|
|
let rec pick_equations init_vars eqs remaining_equations =
|
|
match remaining_equations with
|
|
| [] -> Some eqs
|
|
| _ ->
|
|
begin
|
|
match List.filter
|
|
(fun (patt, expr) ->
|
|
List.for_all
|
|
(fun v -> List.mem v init_vars)
|
|
(vars_of_expr expr))
|
|
remaining_equations with
|
|
| [] -> raise (PassExn "[equation ordering] The equations cannot be ordered.")
|
|
| h :: t ->
|
|
let init_vars =
|
|
List.fold_left
|
|
(fun acc vs ->
|
|
acc @ (vars_of_patt (fst vs))) init_vars (h :: t) in
|
|
pick_equations init_vars (eqs@(h :: t))
|
|
(List.filter (fun eq -> List.for_all (fun e -> eq <> e) (h :: t)) remaining_equations)
|
|
end
|
|
in
|
|
let node_eq_reorganising (node: t_node): t_node option =
|
|
let init_vars = List.map name_of_var (snd node.n_inputs) in
|
|
try
|
|
begin
|
|
match pick_equations init_vars [] node.n_equations with
|
|
| None -> None
|
|
| Some eqs -> Some { node with n_equations = eqs }
|
|
end
|
|
with PassExn err -> (verbose err; None)
|
|
in
|
|
node_pass node_eq_reorganising ast
|
|
|
|
let pass_typing verbose debug ast =
|
|
let htbl = Hashtbl.create (List.length ast) in
|
|
let () = debug "[typing verification]" in
|
|
let () = List.iter
|
|
(fun n -> Hashtbl.add htbl n.n_name (fst n.n_inputs, fst n.n_outputs))
|
|
ast in
|
|
let rec check_varlist vl =
|
|
let t = fst vl in
|
|
let l = snd vl in
|
|
match t, l with
|
|
| [], [] -> true
|
|
| TInt :: t, IVar _ :: l -> check_varlist (t, l)
|
|
| TBool :: t, BVar _ :: l -> check_varlist (t, l)
|
|
| TReal :: t, RVar _ :: l -> check_varlist (t, l)
|
|
| _, _ -> false
|
|
in
|
|
let rec check_expr vl = function
|
|
| EVar (t, v) -> t = type_var v
|
|
| EMonOp (t, _, e) -> check_expr vl e && type_exp e = t
|
|
| EBinOp (t, _, e, e') -> check_expr vl e && check_expr vl e'
|
|
&& t = type_exp e && t = type_exp e'
|
|
| ETriOp (t, _, c, e, e') ->
|
|
check_expr vl e && check_expr vl e' && check_expr vl c
|
|
&& type_exp c = [TBool] && type_exp e = t && type_exp e' = t
|
|
| EComp (t, _, e, e') ->
|
|
check_expr vl e && check_expr vl e' && t = [TBool]
|
|
| EWhen (t, e, e') ->
|
|
check_expr vl e && check_expr vl e'
|
|
&& t = type_exp e && [TBool] = type_exp e'
|
|
| EReset (t, e, e') ->
|
|
check_expr vl e && check_expr vl e' && t = type_exp e && type_exp e' = [TBool]
|
|
| EConst (t, c) -> type_const c = t
|
|
| ETuple (t, l) ->
|
|
List.for_all (check_expr vl) l
|
|
&& t = List.flatten (List.map type_exp l)
|
|
| EApp (t, n, e) ->
|
|
check_expr vl e && t = (fst n.n_outputs) && type_exp e = (fst n.n_inputs)
|
|
in
|
|
let check_equation vl ((peq, eeq): t_equation) =
|
|
if check_varlist peq
|
|
then
|
|
if check_expr vl eeq
|
|
then fst peq = type_exp eeq
|
|
else false
|
|
else false
|
|
in
|
|
let rec check_equations vl = function
|
|
| [] -> true
|
|
| eq :: eqs ->
|
|
if check_equation vl eq
|
|
then check_equations vl eqs
|
|
else false
|
|
in
|
|
let check_one_node node =
|
|
check_varlist (node.n_inputs)
|
|
&& check_varlist (node.n_outputs)
|
|
&& check_varlist (node.n_local_vars)
|
|
&& check_equations
|
|
(varlist_concat node.n_inputs
|
|
(varlist_concat node.n_outputs node.n_local_vars))
|
|
node.n_equations
|
|
in
|
|
let rec aux = function
|
|
| [] -> Some ast
|
|
| n :: nodes ->
|
|
if check_one_node n
|
|
then aux nodes
|
|
else None
|
|
in aux ast
|
|
|
|
let check_automata_validity verbos debug =
|
|
let check_automaton_branch_vars automaton =
|
|
let (init, states) = automaton in
|
|
let left_side = Hashtbl.create 10 in
|
|
|
|
let rec init_left_side eqlist = match eqlist with
|
|
| [] -> ()
|
|
| (varlist, exp)::q ->
|
|
begin
|
|
Hashtbl.add left_side varlist true;
|
|
init_left_side q;
|
|
end
|
|
in
|
|
let check_state s = match s with
|
|
| State(name, eqs, cond, next) ->
|
|
List.for_all (fun (varlist, exp) -> (Hashtbl.mem left_side varlist)) eqs
|
|
in
|
|
begin
|
|
match init with | State(name, eqs, cond, next) -> init_left_side eqs;
|
|
let validity = List.for_all (fun s -> (check_state s)) states in
|
|
if not validity then
|
|
raise (PassExn "Automaton branch has different variables assignment in different branches")
|
|
end
|
|
in
|
|
let aux node =
|
|
List.iter check_automaton_branch_vars node.n_automata;
|
|
Some node
|
|
in
|
|
node_pass aux
|
|
|
|
let automaton_translation debug automaton =
|
|
let gathered = Hashtbl.create 10 in
|
|
let state_to_int = Hashtbl.create 10 in
|
|
let add_to_table var exp state =
|
|
if Hashtbl.mem gathered var then
|
|
let res = Hashtbl.find gathered var in
|
|
Hashtbl.replace gathered var ((state, exp)::res);
|
|
else
|
|
Hashtbl.replace gathered var ([(state, exp)])
|
|
in
|
|
let rec init_state_translation states c = match states with
|
|
| [] -> ()
|
|
| State(name, _, _, _)::q ->
|
|
Hashtbl.replace state_to_int name c; (init_state_translation q (c+1))
|
|
in
|
|
|
|
let rec find_state name =
|
|
match Hashtbl.find_opt state_to_int name with
|
|
| None -> failwith "Unknown state in automaton"
|
|
| Some v -> v
|
|
in
|
|
|
|
let rec equation_pass state : t_eqlist -> unit = function
|
|
| [] -> ()
|
|
| (vars, exp)::q -> begin
|
|
add_to_table vars exp state;
|
|
equation_pass state q
|
|
end
|
|
in
|
|
|
|
let flatten_state state = match state with
|
|
| State(name, eq, cond, next) ->
|
|
(* Flattening is not possible
|
|
for example a branch where x,y = 1, 2 will be unpacked
|
|
when in another branch x, y = f(z) will not be unpacked
|
|
*)
|
|
(*
|
|
let new_equations = List.flatten
|
|
begin
|
|
List.map
|
|
(tpl debug)
|
|
eq
|
|
end in
|
|
*)
|
|
equation_pass name eq;
|
|
State(name, eq, cond, next)
|
|
in
|
|
|
|
let rec transition_eq states s =
|
|
match states with
|
|
| [] -> EVar([TInt], IVar(s))
|
|
| State(name, eqs, cond, next)::q ->
|
|
let name = find_state name
|
|
and next = find_state next in
|
|
ETriOp([TInt], TOp_if,
|
|
EBinOp([TBool], BOp_and,
|
|
EComp([TBool], COp_eq,
|
|
EVar([TInt], IVar(s)),
|
|
EConst([TInt], CInt(name))
|
|
),
|
|
cond
|
|
),
|
|
EConst([TInt], CInt(next)),
|
|
transition_eq q s
|
|
)
|
|
in
|
|
|
|
let default_constant ty =
|
|
let defaults ty = match ty with
|
|
| TInt -> EConst([ty], CInt(0))
|
|
| TBool -> EConst([ty], CBool(false))
|
|
| TReal -> EConst([ty], CReal(0.0))
|
|
in
|
|
match ty with
|
|
| [TInt] -> EConst(ty, CInt(0))
|
|
| [TBool] -> EConst(ty, CBool(false))
|
|
| [TReal] -> EConst(ty, CReal(0.0))
|
|
| _ -> ETuple(ty, List.map defaults ty)
|
|
in
|
|
|
|
let rec translate_var s v explist ty = match explist with
|
|
| [] -> default_constant ty (* TODO *)
|
|
| (state, exp)::q ->
|
|
ETriOp(Utils.type_exp exp, TOp_if,
|
|
EComp([TBool], COp_eq,
|
|
EVar([TInt], IVar(s)),
|
|
EConst([TInt], CInt(Hashtbl.find state_to_int state))
|
|
),
|
|
exp,
|
|
translate_var s v q ty
|
|
)
|
|
in
|
|
|
|
let flatten_automaton automaton =
|
|
let (init, states) = automaton in
|
|
(flatten_state init, List.map flatten_state states)
|
|
in
|
|
let (init, states) = flatten_automaton automaton in
|
|
let s = create_automaton_name () in
|
|
init_state_translation states 1;
|
|
let exp_transition = EBinOp([TInt], BOp_arrow, EConst([TInt], CInt(1)), EMonOp([TInt], MOp_pre, transition_eq states s)) in
|
|
let new_equations = [(([TInt], [IVar(s)]), exp_transition)] in
|
|
Hashtbl.fold (fun var explist acc -> (var, translate_var s var explist (fst var))::acc) gathered new_equations, IVar(s)
|
|
|
|
|
|
let automata_trans_pass debug (node:t_node) : t_node option=
|
|
|
|
let rec aux automaton = match automaton with
|
|
| [] -> [], [], []
|
|
| a::q ->
|
|
let eq, var = automaton_translation debug a
|
|
and tail_eq, tail_var, tail_type = aux q in
|
|
eq@tail_eq, var::tail_var, TInt::tail_type
|
|
in
|
|
|
|
let eqs, vars, new_ty = aux node.n_automata in
|
|
let ty, loc_vars = node.n_local_vars in
|
|
Some
|
|
{
|
|
n_name = node.n_name;
|
|
n_inputs = node.n_inputs;
|
|
n_outputs = node.n_outputs;
|
|
n_local_vars = (new_ty@ty, vars@loc_vars);
|
|
n_equations = eqs@node.n_equations;
|
|
n_automata = []; (* not needed anymore *)
|
|
}
|
|
|
|
let automata_translation_pass verbose debug =
|
|
node_pass (automata_trans_pass debug)
|
|
|
|
let clock_unification_pass verbose debug ast =
|
|
|
|
let failure str = raise (PassExn ("Failed to unify clocks: "^str)) in
|
|
|
|
let known_clocks = Hashtbl.create 100 in
|
|
|
|
let find_clock_var var =
|
|
match Hashtbl.find_opt known_clocks var with
|
|
| None ->
|
|
begin
|
|
match var with
|
|
| BVar(name)
|
|
| IVar(name)
|
|
| RVar(name) -> raise (PassExn ("Cannot find clock of variable "^name) )
|
|
end
|
|
| Some c -> c
|
|
in
|
|
|
|
let rec compute_clock_exp exp = match exp with
|
|
| EConst(_, _) -> [Base]
|
|
| EVar(_, var) -> find_clock_var var
|
|
| EMonOp(_, MOp_pre, _) -> [Base]
|
|
| EMonOp(_, _, e) -> compute_clock_exp e
|
|
|
|
| EComp(_, _, e1, e2)
|
|
| EReset(_, e1, e2)
|
|
| EBinOp(_, _, e1, e2) ->
|
|
begin
|
|
let c1 = compute_clock_exp e1
|
|
and c2 = compute_clock_exp e2 in
|
|
if c1 <> c2 then
|
|
failure "Binop"
|
|
else
|
|
c1
|
|
end
|
|
| EWhen(_, e1, e2) ->
|
|
begin
|
|
match compute_clock_exp e1 with
|
|
| [c1] -> [On (c1, e2)]
|
|
| _ -> failure "When"
|
|
end
|
|
| ETriOp(_, TOp_merge, e1, e2, e3) ->
|
|
begin
|
|
let c1 = compute_clock_exp e1
|
|
and c2 = compute_clock_exp e2
|
|
and c3 = compute_clock_exp e3 in
|
|
match c1, c2, c3 with
|
|
| [c1], [On(cl2, e2)], [On(cl3, e3)] ->
|
|
begin
|
|
if cl2 <> c1 || cl3 <> c1 then
|
|
failure "Triop clocks"
|
|
else match e2, e3 with
|
|
| EMonOp(_, MOp_not, e), _ when e = e3 -> [c1]
|
|
| _, EMonOp(_, MOp_not, e) when e = e2 -> [c1]
|
|
| _ -> failure "Triop condition"
|
|
end
|
|
| _ -> failure ("Merge format")
|
|
end
|
|
| ETriOp(_, TOp_if, e1, e2, e3) ->
|
|
let (* Unused: c1 = compute_clock_exp e1
|
|
and*) c2 = compute_clock_exp e2
|
|
and c3 = compute_clock_exp e3 in
|
|
if c2 <> c3 then
|
|
failure "If clocks"
|
|
else c2
|
|
|
|
| ETuple(_, explist) -> List.concat_map compute_clock_exp explist
|
|
| EApp(_, node, e) ->
|
|
let rec aux_app clk_list = match clk_list with
|
|
| [] -> raise (PassExn "Node called with no argument provided")
|
|
| [cl] -> cl
|
|
| t::q -> if t = (aux_app q) then t else failure "App diff clocks"
|
|
and mult_clk cl out_list = match out_list with
|
|
| [] -> []
|
|
| t::q -> cl::(mult_clk cl q)
|
|
in
|
|
mult_clk (aux_app (compute_clock_exp e)) (snd node.n_outputs)
|
|
in
|
|
|
|
let rec compute_eq_clock eq =
|
|
let rec step vars clks = match vars, clks with
|
|
| [], [] -> ()
|
|
| [], c::q -> raise (PassExn "Mismatch between clock size")
|
|
| v::t, c::q -> Hashtbl.replace known_clocks v [c]; step t q
|
|
| l, [] -> raise (PassExn "Mismatch between clock size")
|
|
in
|
|
let (_, vars), exp = eq in
|
|
let clk = compute_clock_exp exp in
|
|
step vars clk
|
|
in
|
|
|
|
let compute_clock_node n =
|
|
begin
|
|
Hashtbl.clear known_clocks;
|
|
List.iter (fun v -> Hashtbl.replace known_clocks v [Base]) (
|
|
snd n.n_inputs); (* Initializing inputs to base clock *)
|
|
List.iter compute_eq_clock n.n_equations;
|
|
if not (List.for_all (fun v -> (Hashtbl.find known_clocks v) = [Base]) (
|
|
snd n.n_outputs)) then failure "Outputs" (*Checking that the node's output are on base clock *)
|
|
else
|
|
Some n
|
|
end
|
|
in node_pass compute_clock_node ast
|