Make plot_dates.py leverage photo exifs

This commit is contained in:
Benjamin Loison 2024-04-26 00:52:52 +02:00
parent 7cfe566290
commit 1e8d9d844c
Signed by: Benjamin_Loison
SSH Key Fingerprint: SHA256:BtnEgYTlHdOg1u+RmYcDE0mnfz1rhv5dSbQ2gyxW8B8

View File

@ -5,46 +5,36 @@ import numpy as np
import matplotlib.dates as mdates
try:
# Try to fetch a list of Matplotlib releases and their dates
# from https://api.github.com/repos/matplotlib/matplotlib/releases
import json
import urllib.request
from PIL import Image
from PIL.ExifTags import TAGS
url = 'https://api.github.com/repos/matplotlib/matplotlib/releases'
url += '?per_page=100'
data = json.loads(urllib.request.urlopen(url, timeout=1).read().decode())
import os
dates = []
names = []
for item in data:
if 'rc' not in item['tag_name'] and 'b' not in item['tag_name']:
dates.append(item['published_at'].split("T")[0])
names.append(item['tag_name'])
# Convert date strings (e.g. 2014-10-18) to datetime
dates = [datetime.strptime(d, "%Y-%m-%d") for d in dates]
os.chdir('photos')
except Exception:
# In case the above fails, e.g. because of missing internet connection
# use the following lists as fallback.
names = ['v2.2.4', 'v3.0.3', 'v3.0.2', 'v3.0.1', 'v3.0.0', 'v2.2.3',
'v2.2.2', 'v2.2.1', 'v2.2.0', 'v2.1.2', 'v2.1.1', 'v2.1.0',
'v2.0.2', 'v2.0.1', 'v2.0.0', 'v1.5.3', 'v1.5.2', 'v1.5.1',
'v1.5.0', 'v1.4.3', 'v1.4.2', 'v1.4.1', 'v1.4.0']
names = []
dates = []
dates = ['2019-02-26', '2019-02-26', '2018-11-10', '2018-11-10',
'2018-09-18', '2018-08-10', '2018-03-17', '2018-03-16',
'2018-03-06', '2018-01-18', '2017-12-10', '2017-10-07',
'2017-05-10', '2017-05-02', '2017-01-17', '2016-09-09',
'2016-07-03', '2016-01-10', '2015-10-29', '2015-02-16',
'2014-10-26', '2014-10-18', '2014-08-26']
for fileName in sorted(os.listdir()):
#print(fileName)
if fileName.endswith('.JPG'):
image = Image.open(fileName)
imageExif = image.getexif()
dateTimeKey = list(TAGS.keys())[list(TAGS.values()).index('DateTime')]
dateTime = imageExif[dateTimeKey]
#print(dateTime)
names += [fileName.replace('DSC0', '').replace('.JPG', '')]
dates += [dateTime]
#break
# Convert date strings (e.g. 2014-10-18) to datetime
dates = [datetime.strptime(d, "%Y-%m-%d") for d in dates]
# Convert date strings to datetime
dates = [datetime.strptime(d, "%Y:%m:%d %H:%M:%S") for d in dates]
# Choose some nice levels
levels = np.tile([-5, 5, -3, 3, -1, 1],
int(np.ceil(len(dates)/6)))[:len(dates)]
NUMBER_OF_LEVELS = 10
actualLevels = range(-NUMBER_OF_LEVELS * 2 + 1, NUMBER_OF_LEVELS * 2 , 2)
levels = np.tile(actualLevels,
int(np.ceil(len(dates)/len(actualLevels))))[:len(dates)]
# Create figure and plot a stem plot with the date
fig, ax = plt.subplots(figsize=(8.8, 4), layout="constrained")
@ -62,8 +52,7 @@ for d, l, r in zip(dates, levels, names):
verticalalignment="bottom" if l > 0 else "top")
# format x-axis with 4-month intervals
ax.xaxis.set_major_locator(mdates.MonthLocator(interval=4))
ax.xaxis.set_major_formatter(mdates.DateFormatter("%b %Y"))
ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y:%m:%d %H:%M:%S"))
plt.setp(ax.get_xticklabels(), rotation=30, ha="right")
# remove y-axis and spines
@ -71,4 +60,4 @@ ax.yaxis.set_visible(False)
ax.spines[["left", "top", "right"]].set_visible(False)
ax.margins(y=0.1)
plt.show()
plt.show()