Leverage iterativeMean
in extract_noise.py
This commit is contained in:
parent
674f87d480
commit
1ea1bde910
@ -7,7 +7,7 @@ import os
|
||||
from tqdm import tqdm
|
||||
import csv
|
||||
import rawpy
|
||||
from utils import Color, denoise
|
||||
from utils import Color, denoise, iterativeMean
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.ndimage import gaussian_filter
|
||||
|
||||
@ -102,7 +102,7 @@ def getImageNpArray(imageFileName, computeExtremes, color):
|
||||
|
||||
# `color` is the actual color to estimate PRNU with.
|
||||
def treatImage(imageFileName, computeExtremes = False, color = None):
|
||||
global mean, numberOfImagesInMean
|
||||
global estimatedPrnuIterativeMean
|
||||
imageNpArray = getImageNpArray(imageFileName, computeExtremes, color)
|
||||
if imageNpArray is None:
|
||||
return
|
||||
@ -111,11 +111,7 @@ def treatImage(imageFileName, computeExtremes = False, color = None):
|
||||
else:
|
||||
imageDenoisedNpArray = means[color]
|
||||
imageNoiseNpArray = imageNpArray - imageDenoisedNpArray
|
||||
if mean is None:
|
||||
mean = imageNoiseNpArray
|
||||
else:
|
||||
mean = ((mean * numberOfImagesInMean) + imageNoiseNpArray) / (numberOfImagesInMean + 1)
|
||||
numberOfImagesInMean += 1
|
||||
estimatedPrnuIterativeMean.add(imageNoiseNpArray)
|
||||
|
||||
if (minColor is None or maxColor is None) and denoiser != 'mean':
|
||||
# Assuming same intensity scale across color channels.
|
||||
@ -135,27 +131,21 @@ def saveNpArray(fileName, npArray):
|
||||
if denoiser == 'mean':
|
||||
means = {}
|
||||
for color in colors:
|
||||
colorMean = None
|
||||
numberOfImagesInColorMean = 0
|
||||
colorIterativeMean = iterativeMean()
|
||||
for imageFileName in tqdm(imagesFileNames, f'Computing mean of {color} colored images'):
|
||||
imageNpArray = getImageNpArray(imageFileName, False, color)
|
||||
imageNpArray = gaussian_filter(imageNpArray, sigma = 5)
|
||||
if colorMean is None:
|
||||
colorMean = imageNpArray
|
||||
else:
|
||||
colorMean = ((colorMean * numberOfImagesInColorMean) + imageNpArray) / (numberOfImagesInColorMean + 1)
|
||||
numberOfImagesInColorMean += 1
|
||||
means[color] = colorMean
|
||||
colorIterativeMean.add(imageNpArray)
|
||||
means[color] = colorIterativeMean.mean
|
||||
fileName = f'mean_{imagesFolderPathFileName}_{color}'
|
||||
# Then use `merge_single_color_channel_images_according_to_bayer_filter.py` to consider all color channels, instead of saving this single color channel as an image.
|
||||
saveNpArray(fileName, colorMean)
|
||||
saveNpArray(fileName, colorIterativeMean.mean)
|
||||
|
||||
for color in colors:
|
||||
mean = None
|
||||
numberOfImagesInMean = 0
|
||||
estimatedPrnuIterativeMean = iterativeMean()
|
||||
|
||||
for imageFileName in tqdm(imagesFileNames, f'Denoising images for color {color}'):
|
||||
treatImage(imageFileName, color = color)
|
||||
|
||||
npArrayFilePath = f'mean_{imagesFolderPathFileName}_{denoiser}_{color}'
|
||||
saveNpArray(npArrayFilePath, mean)
|
||||
saveNpArray(npArrayFilePath, estimatedPrnuIterativeMean.mean)
|
||||
|
Loading…
x
Reference in New Issue
Block a user