Add attribute_source_camera.py

It is a modified copy of `split_and_compare_prnus_of_subgroups.py`.
This commit is contained in:
Benjamin Loison 2024-04-30 04:48:02 +02:00
parent aa9f73e8a0
commit 319ca8fb60
No known key found for this signature in database

View File

@ -0,0 +1,83 @@
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from utils import denoise, iterativeMean, getColorChannel, escapeFilePath, Color, mergeSingleColorChannelImagesAccordingToBayerFilter, rescaleRawImageForDenoiser, updateExtremes, saveNpArray
import sys
import os
import random
sys.path.insert(0, '../../algorithms/distance/')
from rms_diff import rmsDiffNumpy
DENOISER = 'wavelet'
IMAGES_CAMERAS_FOLDER = {
'RAISE': 'flat-field/nef',
'Rafael 23/04/24': 'rafael/230424',
}
TRAINING_PORTION = 0.5
setting = ','.join([escapeFilePath(imageCameraFolder) for imageCameraFolder in IMAGES_CAMERAS_FOLDER]) + f'_{DENOISER}'
imagesCamerasFileNames = {camera: os.listdir(imageCameraFolder) for camera, imageCameraFolder in IMAGES_CAMERAS_FOLDER.items()}
random.seed(0)
# To not have a bias (chronological for instance) when split to make training and testing sets.
for camera in IMAGES_CAMERAS_FOLDER:
#print(imagesCamerasFileNames[camera][:3])
random.shuffle(imagesCamerasFileNames[camera])
#print(imagesCamerasFileNames[camera][:3])
#exit(1)
minimumNumberOfImagesCameras = 10#min([len(imagesCamerasFileNames[camera]) for camera in IMAGES_CAMERAS_FOLDER])
#print(minimumNumberOfImagesCameras)
#exit(1)
for camera in IMAGES_CAMERAS_FOLDER:
IMAGES_CAMERAS_FOLDER[camera] = IMAGES_CAMERAS_FOLDER[camera][:minimumNumberOfImagesCameras]
numberOfCameras = len(IMAGES_CAMERAS_FOLDER)
camerasIterativeMean = [iterativeMean() for _ in range(numberOfCameras)]
minColor = None
maxColor = None
accuracy = []
returnSingleColorChannelImage = lambda singleColorChannelImage, _minColor, _maxColor: singleColorChannelImage
for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else []) + [False], 'Compute extremes'):
rescaleIfNeeded = returnSingleColorChannelImage if computeExtremes else rescaleRawImageForDenoiser
for cameraImageIndex in tqdm(range(minimumNumberOfImagesCameras * TRAINING_PORTION), 'Camera image index'):
for cameraIndex, camera in enumerate(tqdm(IMAGES_CAMERAS_FOLDER, 'Camera')):
imageFileName = imagesCamerasFileNames[camera][cameraImageIndex]
imageFilePath = f'{IMAGES_CAMERAS_FOLDER[camera]}/{imageFileName}'
singleColorChannelImages = {color: rescaleIfNeeded(getColorChannel(imageFilePath, color), minColor, maxColor) for color in Color}
multipleColorsImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelImages)
if computeExtremes:
minColor, maxColor = updateExtremes(multipleColorsImage, minColor, maxColor)
continue
singleColorChannelDenoisedImages = {color: denoise(singleColorChannelImages[color], DENOISER) for color in Color}
multipleColorsDenoisedImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelDenoisedImages)
imagePrnuEstimateNpArray = multipleColorsImage - multipleColorsDenoisedImage
cameraIterativeMean = subgroupsIterativeMean[cameraIndex]
cameraIterativeMean.add(imagePrnuEstimateNpArray)
if cameraIndex == numberOfCameras - 1:
rms = rmsDiffNumpy(subgroupIterativeMean.mean, subgroupsIterativeMean[1 - cameraIndex].mean)
rmss += [rms]
if computeExtremes:
print(f'{minColor=} {maxColor=}')
for camera in range(IMAGES_CAMERAS_FOLDER):
plt.imsave(f'{setting}_estimated_prnu_subgroup_{escapeFilePath(camera)}.png', (subgroupsIterativeMean[cameraIndex].mean))
plt.title(f'Accuracy of camera source attribution thanks to a given number of images to estimate PRNUs with {DENOISER} denoiser')
plt.xlabel('Number of images to estimate PRNU')
plt.ylabel('Accuracy of camera source attribution')
plt.plot(accuracy)
internalTitle = f'{setting}_accuracy_of_camera_source_attribution'
saveNpArray(internalTitle, accuracy)
plt.savefig(f'{internalTitle}.svg')