Add analyze_bayer_filter_mean_denoiser.py
This commit is contained in:
parent
f1cafc1eb1
commit
3e8b607b97
44
datasets/raise/analyze_bayer_filter_mean_denoiser.py
Normal file
44
datasets/raise/analyze_bayer_filter_mean_denoiser.py
Normal file
@ -0,0 +1,44 @@
|
||||
import numpy as np
|
||||
from utils import Color
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import rawpy
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
'''
|
||||
for color in Color:
|
||||
#if color == 'green_bottom':
|
||||
# continue
|
||||
print(color)
|
||||
'''
|
||||
|
||||
os.chdir('flat-field/NEF')
|
||||
|
||||
firstBayerFilterOccurrenceImages = []
|
||||
|
||||
for fileName in tqdm(os.listdir()):
|
||||
with rawpy.imread(fileName) as raw:
|
||||
colorDesc = raw.color_desc.decode('ascii')
|
||||
assert colorDesc == 'RGBG'
|
||||
assert np.array_equal(raw.raw_pattern, np.array([[0, 1], [3, 2]], dtype = np.uint8))
|
||||
# RG
|
||||
# GB
|
||||
firstBayerFilterOccurrenceImage = raw.raw_image_visible.copy()[:2, :2]
|
||||
firstBayerFilterOccurrenceImages += [firstBayerFilterOccurrenceImage]
|
||||
|
||||
firstBayerFilterOccurrenceImages = np.array(firstBayerFilterOccurrenceImages)
|
||||
print(rawImageVisible)
|
||||
|
||||
NUMBER_OF_COLORS = 3
|
||||
HEX_COLOR = '#' + '%02x' * NUMBER_OF_COLORS
|
||||
COLOR_BASE = 256
|
||||
|
||||
def getColor(colorIndex):
|
||||
return HEX_COLOR % tuple((255 if colorIndex == colorIndexTmp else 0) for colorIndexTmp in range(NUMBER_OF_COLORS))
|
||||
|
||||
#X, Y = np.histogram(firstBayerFilterOccurrenceImages[:,0,0])
|
||||
#plt.plot(X, Y)
|
||||
for colorIndex, (colorY, colorX) in enumerate([(0, 0), (0, 1), (1, 1)]):
|
||||
X = firstBayerFilterOccurrenceImages[:, colorY, colorX] - np.mean(firstBayerFilterOccurrenceImages, axis = 0)[colorY, colorX]
|
||||
plt.hist(X, bins = len(set(X)), color = getColor(colorIndex), alpha = 0.3)
|
||||
plt.show()
|
Loading…
x
Reference in New Issue
Block a user