#72: Verify pointer before actually implementing the correct second choice
This commit is contained in:
parent
dbfc2756b2
commit
50058d5d2e
@ -139,7 +139,15 @@ for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else
|
||||
imagePrnuEstimateNpArray = getImagePrnuEstimateNpArray(singleColorChannelImages, multipleColorsImage, camera)
|
||||
|
||||
cameraIterativeMean = camerasIterativeMean[camera]
|
||||
cameraIterativeMean.add(imagePrnuEstimateNpArray)
|
||||
if DENOISER != Denoiser.MEAN or PREDICT_ONLY_ON_WHOLE_TRAINING_SET:
|
||||
cameraIterativeMean.add(imagePrnuEstimateNpArray)
|
||||
else:
|
||||
# Still use `cameraIterativeMean` to simplify the implementation.
|
||||
# TODO: cameraIterativeMean.mean = mean([image_training_j_camera - cameraIterativeMean.mean for j in range(l)])
|
||||
cameraIterativeMean.mean = 42
|
||||
print(f'{cameraIterativeMean.mean = }')
|
||||
print(f'{camerasIterativeMean[camera].mean = }')
|
||||
exit(1)
|
||||
# If we are considering the last camera and (not `PREDICT_ONLY_ON_WHOLE_TRAINING_SET` or we are considering the last training image), then we proceeded an additional image for all cameras and we can predict the accuracy at this learning step.
|
||||
if cameraIndex == numberOfCameras - 1 and (not PREDICT_ONLY_ON_WHOLE_TRAINING_SET or cameraTrainingImageIndex == numberOfTrainingImages - 1):
|
||||
numberOfTrainingImagesAccuracy = 0
|
||||
|
Loading…
x
Reference in New Issue
Block a user