Clean some debugging
This commit is contained in:
parent
7a807b91d8
commit
53c3935bab
@ -29,7 +29,7 @@ for camera in IMAGES_CAMERAS_FOLDER:
|
||||
|
||||
minimumNumberOfImagesCameras = 16#min([len(imagesCamerasFileNames[camera]) for camera in IMAGES_CAMERAS_FOLDER])
|
||||
for camera in IMAGES_CAMERAS_FOLDER:
|
||||
imagesCamerasFileNames[camera] = imagesCamerasFileNames[camera][:minimumNumberOfImagesCameras]#[imagesCamerasFileNames[camera][0]] * minimumNumberOfImagesCameras#[:minimumNumberOfImagesCameras]
|
||||
imagesCamerasFileNames[camera] = imagesCamerasFileNames[camera][:minimumNumberOfImagesCameras]
|
||||
print(camera, imagesCamerasFileNames[camera])
|
||||
|
||||
numberOfCameras = len(IMAGES_CAMERAS_FOLDER)
|
||||
@ -77,7 +77,7 @@ for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else
|
||||
multipleColorsDenoisedImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelDenoisedImages)
|
||||
imagePrnuEstimateNpArray = multipleColorsImage - multipleColorsDenoisedImage
|
||||
|
||||
cameraTestingImagesNoise[camera] = cameraTestingImagesNoise.get(camera, []) + [imagePrnuEstimateNpArray]#multipleColorsDenoisedImage]
|
||||
cameraTestingImagesNoise[camera] = cameraTestingImagesNoise.get(camera, []) + [imagePrnuEstimateNpArray]
|
||||
for cameraTrainingImageIndex in tqdm(range(minimumNumberOfImagesCameras if computeExtremes else numberOfTrainingImages), 'Camera training image index'):
|
||||
for cameraIndex, camera in enumerate(tqdm(IMAGES_CAMERAS_FOLDER, 'Camera')):
|
||||
imageFileName = imagesCamerasFileNames[camera][cameraTrainingImageIndex]
|
||||
@ -93,13 +93,8 @@ for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else
|
||||
multipleColorsDenoisedImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelDenoisedImages)
|
||||
|
||||
imagePrnuEstimateNpArray = multipleColorsImage - multipleColorsDenoisedImage
|
||||
#print(camera)
|
||||
#plt.imshow(multipleColorsImage)
|
||||
#plt.show()
|
||||
#exit(1)
|
||||
cameraIterativeMean = camerasIterativeMean[camera]
|
||||
cameraIterativeMean.add(imagePrnuEstimateNpArray)
|
||||
plt.imsave(f'm_{escapeFilePath(camera)}.png', camerasIterativeMean[camera].mean)
|
||||
if cameraIndex == numberOfCameras - 1:
|
||||
numberOfTrainingImagesAccuracy = 0
|
||||
print(f'{numberOfTestingImages=} {numberOfCameras=}')
|
||||
@ -111,18 +106,7 @@ for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else
|
||||
# Loop over each camera to compute closeness between the considered testing image noise and the estimated PRNUs of the various cameras.
|
||||
for camera in IMAGES_CAMERAS_FOLDER:
|
||||
distance = rmsDiffNumpy(cameraTestingImagesNoise[actualCamera][cameraTestingImageIndex], camerasIterativeMean[camera].mean)
|
||||
'''
|
||||
print(f'{camerasIterativeMean[camera].numberOfElementsInMean=}')
|
||||
print(f'{cameraTestingImagesNoise[actualCamera][cameraTestingImageIndex].min()=}')
|
||||
print(f'{cameraTestingImagesNoise[actualCamera][cameraTestingImageIndex].max()=}')
|
||||
print(f'{camerasIterativeMean[camera].mean.min()=}')
|
||||
print(f'{camerasIterativeMean[camera].mean.max()=}')
|
||||
plt.imsave(f'a_{actualCamera}.png', cameraTestingImagesNoise[actualCamera][cameraTestingImageIndex])
|
||||
plt.imsave(f'b_{camera}.png', camerasIterativeMean[camera].mean)
|
||||
plt.show()
|
||||
'''
|
||||
print(f'{cameraTestingImageIndex=} {camera=} {actualCamera=} {distance=}')
|
||||
#exit(1)
|
||||
if minimalDistance is None or distance < minimalDistance:
|
||||
minimalDistance = distance
|
||||
cameraPredicted = camera
|
||||
@ -132,7 +116,7 @@ for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else
|
||||
accuracy += [numberOfTrainingImagesAccuracy / (numberOfTestingImages * numberOfCameras)]
|
||||
|
||||
for camera in IMAGES_CAMERAS_FOLDER:
|
||||
plt.imsave(f'{setting}_estimated_prnu_subgroup_{escapeFilePath(camera)}.png', (camerasIterativeMean[camera].mean))
|
||||
plt.imsave(f'{setting}_estimated_prnu_camera_{escapeFilePath(camera)}.png', (camerasIterativeMean[camera].mean))
|
||||
|
||||
plt.title(f'Accuracy of camera source attribution thanks to a given number of images to estimate PRNUs with {DENOISER} denoiser')
|
||||
plt.xlabel('Number of images to estimate PRNU')
|
||||
|
Loading…
x
Reference in New Issue
Block a user