First iteration of fake dataset generation
This commit is contained in:
@@ -1,13 +1,24 @@
|
||||
from PIL import Image
|
||||
import numpy
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
import sys
|
||||
|
||||
sys.path.insert(0, '../../algorithms/distance/')
|
||||
|
||||
from rmsdiff import rmsdiff
|
||||
|
||||
IMAGE_SIZE = 64
|
||||
MODE = 'L'
|
||||
|
||||
IImage = Image.new(MODE, (IMAGE_SIZE, IMAGE_SIZE))
|
||||
I = IImage.load()
|
||||
for y in range(IMAGE_SIZE):
|
||||
for x in range(IMAGE_SIZE):
|
||||
I[y, x] = numpy.random.normal(loc = 0, scale = 1, size = 1)
|
||||
def randomImage(scale):
|
||||
# Is `np.clip` necessary?
|
||||
return np.round(np.random.normal(loc = 0, scale = scale, size = (IMAGE_SIZE, IMAGE_SIZE)))
|
||||
|
||||
I.show()
|
||||
prnu = randomImage(scale = 1)
|
||||
|
||||
plt.imshow(prnu)
|
||||
plt.show()
|
||||
|
||||
images = [randomImage(scale = 10) + prnu for _ in range(10)]
|
||||
|
||||
for image in images:
|
||||
print(rmsdiff(image, prnu))
|
||||
print(rmsdiff(contextAdaptiveInterpolator(image), prnu))
|
Reference in New Issue
Block a user