Output an estimated PRNU per color channel

This commit is contained in:
Benjamin Loison 2024-04-17 20:25:14 +02:00
parent f15af68bba
commit 8c9dfc2e41
No known key found for this signature in database

View File

@ -13,15 +13,11 @@ from enum import Enum, auto
imagesFolderPath = '/mnt/HDD0/raise'
imagesFolderPathFileName = imagesFolderPath.replace('/', '_')
denoiser = 'wavelet'
npArrayFilePath = f'mean_{imagesFolderPathFileName}_{denoiser}.npy'
raiseNotFlatFields = False
denoise = getattr(skimage.restoration, f'denoise_{denoiser}')
mean = None
numberOfImagesInMean = 0
imagesFileNames = os.listdir(imagesFolderPath + ('/png' if raiseNotFlatFields else ''))
if raiseNotFlatFields:
@ -48,6 +44,9 @@ class Color(Enum):
GREEN_BOTTOM = auto()
BLUE = auto()
def __str__(self):
return self.name.lower()
# `color` is the actual color to estimate PRNU with.
def treatImage(imageFileName, computeExtremes = False, color = None):
global mean, numberOfImagesInMean, minColor, maxColor
@ -110,16 +109,23 @@ def treatImage(imageFileName, computeExtremes = False, color = None):
mean = ((mean * numberOfImagesInMean) + imageNoiseNpArray) / (numberOfImagesInMean + 1)
numberOfImagesInMean += 1
# Assuming same intensity scale across color channels.
for imageFileName in tqdm(imagesFileNames, 'Computing extremes of images'):
treatImage(imageFileName, computeExtremes = True, color = Color.GREEN)
for color in Color:
treatImage(imageFileName, computeExtremes = True, color = color)
# To skip this step next time.
# Maybe thanks to `rawpy.RawPy` fields, possibly stating device maximal value, can avoid doing so to some extent.
print(f'{minColor=}')
print(f'{maxColor=}')
for imageFileName in tqdm(imagesFileNames, 'Denoising images'):
treatImage(imageFileName)
for color in Color:
mean = None
numberOfImagesInMean = 0
with open(npArrayFilePath, 'wb') as f:
np.save(f, mean)
for imageFileName in tqdm(imagesFileNames, 'Denoising images'):
treatImage(imageFileName)
npArrayFilePath = f'mean_{imagesFolderPathFileName}_{denoiser}_{color}.npy'
with open(npArrayFilePath, 'wb') as f:
np.save(f, mean)