cmap try
This commit is contained in:
parent
6f961a46cf
commit
9d20940cb1
@ -24,7 +24,7 @@ datasetPath = 'no_noise_images'
|
||||
# Note that contrarily to `datasets/fake/`, here we do not have images being Gaussian with `scale` `1` but actual images with pixel values between 0 and 255.
|
||||
# In addition to the range difference, note that the distribution in the first set of images was a Gaussian and here is very different and specific.
|
||||
PRNU_FACTOR = 0.01
|
||||
NOISE_FACTOR = 0.1
|
||||
NOISE_FACTOR = 0.2
|
||||
|
||||
np.random.seed(0)
|
||||
|
||||
@ -34,8 +34,8 @@ SPLIT_N_X_N_S = [1, 2, 4]
|
||||
fig, axes = plt.subplots(2, 4)
|
||||
fig.suptitle('PRNU estimation with different number of images having Gaussian noise and Gaussian noised PRNU')
|
||||
|
||||
def axisImShow(axis, im):
|
||||
imShow = axis.imshow(im)
|
||||
def axisImShow(axis, im, cmap = None):
|
||||
imShow = axis.imshow(im, cmap = cmap)
|
||||
plt.colorbar(imShow, label = 'Intensity', ax = axis, orientation = 'horizontal')
|
||||
|
||||
for splitNXNIndex, splitNXN in enumerate(SPLIT_N_X_N_S):
|
||||
@ -71,20 +71,26 @@ for splitNXNIndex, splitNXN in enumerate(SPLIT_N_X_N_S):
|
||||
if splitNXNIndex == 0 and isFirstImage:
|
||||
axis = axes[0]
|
||||
|
||||
images = [imageWithoutPrnuNpArrayTile, imageWithoutPrnuNpArray + imageNoise, imageWithoutPrnuNpArray + prnuNpArray + imageNoise]
|
||||
vMin = np.min(images)#min([np.min(image) for image in [imageWithoutPrnuNpArrayTile, imageWithoutPrnuNpArray + imageNoise, imageWithoutPrnuNpArray + prnuNpArray + imageNoise]])
|
||||
vMax = np.max(images)
|
||||
cmap = (vMin, vMax)
|
||||
#print(f'{vMin=}')
|
||||
|
||||
axis[0].set_title('First image without noise')
|
||||
axisImShow(axis[0], imageWithoutPrnuNpArrayTile)
|
||||
axisImShow(axis[0], imageWithoutPrnuNpArrayTile, cmap = cmap)
|
||||
|
||||
axis[1].set_title('First image Gaussian noise')
|
||||
axisImShow(axis[1], imageNoise)
|
||||
|
||||
axis[2].set_title('First image with Gaussian noise')
|
||||
axisImShow(axis[2], np.clip(imageWithoutPrnuNpArray + imageNoise, 0, 255))
|
||||
axisImShow(axis[2], imageWithoutPrnuNpArray + imageNoise, cmap = cmap)
|
||||
|
||||
axis[3].set_title('Actual Gaussian noised PRNU')
|
||||
axisImShow(axis[3], prnuNpArray)
|
||||
|
||||
axes[1][0].set_title('First image with Gaussian noise and PRNU')
|
||||
axisImShow(axes[1][0], np.clip(imageWithoutPrnuNpArray + prnuNpArray + imageNoise, 0, 255))
|
||||
axisImShow(axes[1][0], imageWithoutPrnuNpArray + prnuNpArray + imageNoise, cmap = cmap)
|
||||
isFirstImage = False
|
||||
|
||||
#assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
|
||||
|
Loading…
x
Reference in New Issue
Block a user