Move denoising testing images to work even if provide minColor and maxColor (#63)

This commit is contained in:
Benjamin Loison 2024-04-30 05:36:28 +02:00
parent 3c403dbed3
commit a8725e5e88
No known key found for this signature in database

View File

@ -43,11 +43,11 @@ for camera in IMAGES_CAMERAS_FOLDER:
imageFileName = imagesCamerasFileNames[camera][0]
imageFilePath = f'{IMAGES_CAMERAS_FOLDER[camera]}/{imageFileName}'
singleColorChannelImagesShape = getColorChannel(imageFilePath, Color.RED).shape
#print(singleColorChannelImagesShape)
if minimalColorChannelCameraResolution is None or singleColorChannelImagesShape < minimalColorChannelCameraResolution:
minimalColorChannelCameraResolution = singleColorChannelImagesShape
#print(minimalColorChannelCameraResolution)
#exit(1)
minColor = 13#None
maxColor = 7497#None
accuracy = []
numberOfTrainingImages = int(minimumNumberOfImagesCameras * TRAINING_PORTION)
@ -58,6 +58,23 @@ returnSingleColorChannelImage = lambda singleColorChannelImage, _minColor, _maxC
for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else []) + [False], 'Compute extremes'):
rescaleIfNeeded = returnSingleColorChannelImage if computeExtremes else rescaleRawImageForDenoiser
if not computeExtremes:
print(f'{minColor=} {maxColor=}')
print('Extracting noise of testing images')
for camera in tqdm(IMAGES_CAMERAS_FOLDER, 'Camera'):
for cameraTestingImageIndex in tqdm(range(numberOfTestingImages), 'Camera testing image index'):
# Should make a function
imageFileName = imagesCamerasFileNames[camera][numberOfTrainingImages + cameraTestingImageIndex]
imageFilePath = f'{IMAGES_CAMERAS_FOLDER[camera]}/{imageFileName}'
# Should make a function
singleColorChannelImages = {color: rescaleIfNeeded(getColorChannel(imageFilePath, color)[:minimalColorChannelCameraResolution[0],:minimalColorChannelCameraResolution[1]], minColor, maxColor) for color in Color}
multipleColorsImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelImages)
singleColorChannelDenoisedImages = {color: denoise(singleColorChannelImages[color], DENOISER) for color in Color}
multipleColorsDenoisedImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelDenoisedImages)
imagePrnuEstimateNpArray = multipleColorsImage - multipleColorsDenoisedImage
cameraTestingImagesNoise[camera] = cameraTestingImagesNoise.get(camera, []) + [multipleColorsDenoisedImage]
for cameraTrainingImageIndex in tqdm(range(minimumNumberOfImagesCameras if computeExtremes else numberOfTrainingImages), 'Camera training image index'):
for cameraIndex, camera in enumerate(tqdm(IMAGES_CAMERAS_FOLDER, 'Camera')):
imageFileName = imagesCamerasFileNames[camera][cameraTrainingImageIndex]
@ -92,23 +109,6 @@ for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else
if cameraPredicted == actualCamera:
numberOfTrainingImagesAccuracy += 1
accuracy += [numberOfTrainingImagesAccuracy / (numberOfTestingImages * numberOfCameras)]
if computeExtremes:
print(f'{minColor=} {maxColor=}')
print('Extracting noise of testing images')
for camera in tqdm(IMAGES_CAMERAS_FOLDER, 'Camera'):
for cameraTestingImageIndex in tqdm(range(numberOfTestingImages), 'Camera testing image index'):
# Should make a function
imageFileName = imagesCamerasFileNames[camera][numberOfTrainingImages + cameraTestingImageIndex]
imageFilePath = f'{IMAGES_CAMERAS_FOLDER[camera]}/{imageFileName}'
# Should make a function
singleColorChannelImages = {color: rescaleIfNeeded(getColorChannel(imageFilePath, color)[:minimalColorChannelCameraResolution[0],:minimalColorChannelCameraResolution[1]], minColor, maxColor) for color in Color}
multipleColorsImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelImages)
singleColorChannelDenoisedImages = {color: denoise(singleColorChannelImages[color], DENOISER) for color in Color}
multipleColorsDenoisedImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelDenoisedImages)
imagePrnuEstimateNpArray = multipleColorsImage - multipleColorsDenoisedImage
cameraTestingImagesNoise[camera] = cameraTestingImagesNoise.get(camera, []) + [multipleColorsDenoisedImage]
for camera in IMAGES_CAMERAS_FOLDER:
plt.imsave(f'{setting}_estimated_prnu_subgroup_{escapeFilePath(camera)}.png', (camerasIterativeMean[camera].mean))