Clean datasets/raise/extract_noise.py
This commit is contained in:
parent
a09f2ba1c0
commit
bddfa4c8d5
@ -6,6 +6,7 @@ import numpy as np
|
||||
from PIL import Image
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import csv
|
||||
|
||||
imagesFolderPath = 'raise_nef_png'
|
||||
denoiser = 'wavelet'
|
||||
@ -16,35 +17,19 @@ denoise = getattr(skimage.restoration, f'denoise_{denoiser}')
|
||||
mean = None
|
||||
numberOfImagesInMean = 0
|
||||
|
||||
import csv
|
||||
import magic
|
||||
import re
|
||||
|
||||
deviceFiles = {}
|
||||
resolutionFiles = {}
|
||||
files = {}
|
||||
resolutionFiles = {}
|
||||
|
||||
with open('RAISE_all.csv') as csvfile:
|
||||
reader = csv.DictReader(csvfile)
|
||||
for row in tqdm(list(reader)):
|
||||
file = row['File'] + '.png'
|
||||
device = row['Device']
|
||||
resolution = row['Image Size']
|
||||
deviceFiles[file] = device
|
||||
#resolutionFiles[file] = resolution
|
||||
image = Image.open(f'{imagesFolderPath}/{file}')
|
||||
#t = magic.from_file(f'{imagesFolderPath}/{file}.png')
|
||||
resolution = image.size
|
||||
resolutionFiles[file] = resolution#re.search('(\d+) x (\d+)', t).groups()
|
||||
#print(device, resolution)
|
||||
#files[f'{file}.png'] = row
|
||||
|
||||
imagesFileNames = os.listdir(imagesFolderPath)
|
||||
#print(len(imagesFileNames))
|
||||
# imageFileName.replace('.png', '')
|
||||
imagesFileNames = [imageFileName for imageFileName in imagesFileNames if deviceFiles[imageFileName] == 'Nikon D7000' and resolutionFiles[imageFileName] == (4946, 3278)]
|
||||
#print(len(imagesFileNames))
|
||||
|
||||
requiresRaiseFiltering = False
|
||||
if requiresRaiseFiltering:
|
||||
files = {}
|
||||
|
||||
with open('RAISE_all.csv') as csvfile:
|
||||
reader = csv.DictReader(csvfile)
|
||||
for row in tqdm(list(reader), 'CSV parsing'):
|
||||
file = row['File'] + '.png'
|
||||
files[file] = row
|
||||
|
||||
imagesFileNames = [imageFileName for imageFileName in tqdm(imagesFileNames, 'Filtering images') if files[imageFileName]['Device'] == 'Nikon D7000' and Image.open(f'{imagesFolderPath}/{imageFileName}').size == (4946, 3278)]
|
||||
|
||||
def treatImage(imageFileName):
|
||||
global mean, numberOfImagesInMean
|
||||
@ -60,7 +45,7 @@ def treatImage(imageFileName):
|
||||
mean = ((mean * numberOfImagesInMean) + imageNoiseNpArray) / (numberOfImagesInMean + 1)
|
||||
numberOfImagesInMean += 1
|
||||
|
||||
for imageFileName in tqdm(imagesFileNames):
|
||||
for imageFileName in tqdm(imagesFileNames, 'Denoising images'):
|
||||
treatImage(imageFileName)
|
||||
|
||||
with open(npArrayFilePath, 'wb') as f:
|
||||
|
Loading…
x
Reference in New Issue
Block a user