Add PRNU estimation computation
This commit is contained in:
		| @@ -8,21 +8,23 @@ sys.path.insert(0, '../') | ||||
|  | ||||
| from utils import isARawImage, Color, getColorChannel, mergeSingleColorChannelImagesAccordingToBayerFilter, iterativeMean | ||||
|  | ||||
| #images = [] | ||||
| folder = '../rafael/230424' | ||||
| meanImages = iterativeMean() | ||||
| filePaths = [f'{folder}/{file}' for file in os.listdir(folder) if isARawImage(file)] | ||||
|  | ||||
| for file in tqdm(os.listdir(folder)): | ||||
|     if isARawImage(file): | ||||
|         #print(file) | ||||
|         filePath = f'{folder}/{file}' | ||||
|         imageColorChannels = {color: getColorChannel(filePath, color) for color in Color} | ||||
|         imageMergedColorChannels = mergeSingleColorChannelImagesAccordingToBayerFilter(imageColorChannels) | ||||
|         #images += [imageMergedColorChannels] | ||||
|         meanImages.add(imageMergedColorChannels) | ||||
| for filePath in tqdm(filePaths): | ||||
|     imageColorChannels = {color: getColorChannel(filePath, color) for color in Color} | ||||
|     imageMergedColorChannels = mergeSingleColorChannelImagesAccordingToBayerFilter(imageColorChannels) | ||||
|     meanImages.add(imageMergedColorChannels) | ||||
|  | ||||
| #print(np.mean(images, axis = 0).shape) | ||||
| print(meanImages.shape) | ||||
| #print(meanImages.mean.shape) | ||||
|  | ||||
| plt.imshow() | ||||
| # Is not there anything clever than this to do? See [Robust_image_source_identification_on_modern_smartphones/issues/72](https://gitea.lemnoslife.com/Benjamin_Loison/Robust_image_source_identification_on_modern_smartphones/issues/72). | ||||
| estimatedPrnu = iterativeMean() | ||||
| for filePath in tqdm(filePaths): | ||||
|     imageColorChannels = {color: getColorChannel(filePath, color) for color in Color} | ||||
|     imageMergedColorChannels = mergeSingleColorChannelImagesAccordingToBayerFilter(imageColorChannels) | ||||
|     estimatedPrnu.add(imageMergedColorChannels - meanImages.mean) | ||||
|  | ||||
| plt.imshow(estimatedPrnu.mean) | ||||
| plt.show() | ||||
		Reference in New Issue
	
	Block a user