Restore clipping
6f961a46cf45324495f136c95bee7f154a421e57
This commit is contained in:
parent
5bc0337dc8
commit
d24c883a92
@ -34,9 +34,8 @@ SPLIT_N_X_N_S = [1, 2, 4]
|
||||
fig, axes = plt.subplots(2, 4)
|
||||
fig.suptitle('PRNU estimation with different number of images having Gaussian noise and Gaussian noised PRNU')
|
||||
|
||||
def axisImShow(axis, im, cMap = (None, None)):
|
||||
vMin, vMax = cMap
|
||||
imShow = axis.imshow(im, vmin = vMin, vmax = vMax)
|
||||
def axisImShow(axis, im):
|
||||
imShow = axis.imshow(im)
|
||||
plt.colorbar(imShow, label = 'Intensity', ax = axis, orientation = 'horizontal')
|
||||
|
||||
for splitNXNIndex, splitNXN in enumerate(SPLIT_N_X_N_S):
|
||||
@ -72,26 +71,20 @@ for splitNXNIndex, splitNXN in enumerate(SPLIT_N_X_N_S):
|
||||
if splitNXNIndex == 0 and isFirstImage:
|
||||
axis = axes[0]
|
||||
|
||||
images = [imageWithoutPrnuNpArrayTile, imageWithoutPrnuNpArray + imageNoise, imageWithoutPrnuNpArray + prnuNpArray + imageNoise]
|
||||
vMin = np.min(images)#min([np.min(image) for image in [imageWithoutPrnuNpArrayTile, imageWithoutPrnuNpArray + imageNoise, imageWithoutPrnuNpArray + prnuNpArray + imageNoise]])
|
||||
vMax = np.max(images)
|
||||
cMap = (vMin, vMax)
|
||||
#print(f'{vMin=}')
|
||||
|
||||
axis[0].set_title('First image without noise')
|
||||
axisImShow(axis[0], imageWithoutPrnuNpArrayTile, cMap = cMap)
|
||||
axisImShow(axis[0], imageWithoutPrnuNpArrayTile)
|
||||
|
||||
axis[1].set_title('First image Gaussian noise')
|
||||
axisImShow(axis[1], imageNoise)
|
||||
|
||||
axis[2].set_title('First image with Gaussian noise')
|
||||
axisImShow(axis[2], imageWithoutPrnuNpArray + imageNoise, cMap = cMap)
|
||||
axisImShow(axis[2], np.clip(imageWithoutPrnuNpArray + imageNoise, 0, 255))
|
||||
|
||||
axis[3].set_title('Actual Gaussian noised PRNU')
|
||||
axisImShow(axis[3], prnuNpArray)
|
||||
|
||||
axes[1][0].set_title('First image with Gaussian noise and PRNU')
|
||||
axisImShow(axes[1][0], imageWithoutPrnuNpArray + prnuNpArray + imageNoise, cMap = cMap)
|
||||
axisImShow(axes[1][0], np.clip(imageWithoutPrnuNpArray + prnuNpArray + imageNoise, 0, 255))
|
||||
isFirstImage = False
|
||||
|
||||
#assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
|
||||
|
Loading…
x
Reference in New Issue
Block a user