Apply Context-Adaptive Interpolator

This commit is contained in:
Benjamin Loison 2024-03-29 00:06:13 +01:00
parent 9a3cfd7ba1
commit dfe2540c02
Signed by: Benjamin_Loison
SSH Key Fingerprint: SHA256:BtnEgYTlHdOg1u+RmYcDE0mnfz1rhv5dSbQ2gyxW8B8
3 changed files with 27 additions and 12 deletions

View File

@ -7,4 +7,7 @@ def randomGaussianImage(scale, size):
def showImageWithMatplotlib(npArray):
plt.imshow(npArray)
plt.show()
plt.show()
def toPilImage(npArray):
return Image.fromarray(npArray)

View File

@ -15,7 +15,7 @@ from context_adaptive_interpolator import contextAdaptiveInterpolator
sys.path.insert(0, '../../algorithms/image_utils/')
from image_utils import showImageWithMatplotlib, randomGaussianImage
from image_utils import showImageWithMatplotlib, randomGaussianImage, toPilImage
from tqdm import tqdm
IMAGE_SIZE = 64
@ -37,9 +37,6 @@ imagesWithPrnu = [[imageWithoutPrnu + prnus[phoneIndex] for imageWithoutPrnu in
allImages = np.max([np.max(imagesWithoutPrnu) + np.max(prnus) + np.max(imagesWithPrnu)])
def toPilImage(npArray):
return Image.fromarray(npArray)
def showImageWithPil(npArray):
npArray -= npArray.min()
npArray = (npArray / npArray.max()) * 255

View File

@ -7,12 +7,16 @@ import sys
sys.path.insert(0, '../../algorithms/image_utils/')
from image_utils import showImageWithMatplotlib, randomGaussianImage
from image_utils import showImageWithMatplotlib, randomGaussianImage, toPilImage
sys.path.insert(0, '../../algorithms/context_adaptive_interpolator/')
from context_adaptive_interpolator import contextAdaptiveInterpolator
datasetPath = 'no_noise_images'
# Note that contrarily to `datasets/fake/`, here we do not have images being Gaussian with `scale` `1` but actual images with pixel values between 0 and 255.
# In addition to the range difference, note that the distribution in the first set of images was a Gaussian and here is very different and specific.
PRNU_FACTOR = 0.1
PRNU_FACTOR = 0.15
IMAGE_SIZE_SHAPE = (469, 704)
np.random.seed(0)
@ -21,11 +25,22 @@ np.random.seed(0)
prnuPil = Image.open('prnu.png').convert('F')
prnuNpArray = np.array(prnuPil) * PRNU_FACTOR
def isIn256Range(x):
return 0 <= x and x <= 255
for imageName in os.listdir(datasetPath):
if imageName.endswith('.png'):
imagePath = f'{datasetPath}/{imageName}'
imagePil = Image.open(imagePath).convert('F')
imageNpArray = np.array(imagePil)
#showImageWithMatplotlib(imageNpArray)
showImageWithMatplotlib(imageNpArray + prnuNpArray)
break
imageWithoutPrnuPil = Image.open(imagePath).convert('F')
imageWithoutPrnuNpArray = np.array(imageWithoutPrnuPil)
#showImageWithMatplotlib(imageWithoutPrnuNpArray)
imageWithPrnuNpArray = imageWithoutPrnuNpArray + prnuNpArray
showImageWithMatplotlib(imageWithPrnuNpArray)
break
assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
imageWithPrnuPil = toPilImage(imageWithPrnuNpArray)
imageWithPrnuCaiPil = contextAdaptiveInterpolator(imageWithPrnuPil.load(), imageWithPrnuPil)
imageWithPrnuCaiNpArray = np.array(imageWithPrnuCaiPil)
showImageWithMatplotlib(imageWithPrnuCaiNpArray)
break