Make single figure to compare multiple splitNXN
values
This commit is contained in:
parent
81852d5dc6
commit
f0db61efe2
@ -25,47 +25,76 @@ datasetPath = 'no_noise_images'
|
||||
# In addition to the range difference, note that the distribution in the first set of images was a Gaussian and here is very different and specific.
|
||||
PRNU_FACTOR = 0.01
|
||||
NOISE_FACTOR = 0.1
|
||||
SPLIT_N_X_N = 1
|
||||
|
||||
IMAGE_SIZE_SHAPE = [dimension // SPLIT_N_X_N for dimension in (704, 469)]
|
||||
|
||||
np.random.seed(0)
|
||||
|
||||
#prnuNpArray = 255 * randomGaussianImage(scale = PRNU_FACTOR, size = IMAGE_SIZE_SHAPE)
|
||||
prnuNpArray = getPrnuShownAsSuch(IMAGE_SIZE_SHAPE, 255) * PRNU_FACTOR
|
||||
SPLIT_N_X_N_S = [1, 2, 4]
|
||||
|
||||
def isIn256Range(x):
|
||||
return 0 <= x and x <= 255
|
||||
# len(SPLIT_N_X_N_S)
|
||||
fig, axes = plt.subplots(2, 4)
|
||||
fig.suptitle('PRNU estimation with different number of images having Gaussian noise and Gaussian noised PRNU')
|
||||
|
||||
imagesPrnuEstimateNpArray = []
|
||||
for splitNXNIndex, splitNXN in enumerate(SPLIT_N_X_N_S):
|
||||
IMAGE_SIZE_SHAPE = [dimension // splitNXN for dimension in (704, 469)]
|
||||
|
||||
for imageName in os.listdir(datasetPath):
|
||||
if imageName.endswith('.png'):
|
||||
imagePath = f'{datasetPath}/{imageName}'
|
||||
imageWithoutPrnuPil = Image.open(imagePath).convert('F')
|
||||
imageWithoutPrnuNpArray = np.array(imageWithoutPrnuPil)
|
||||
#prnuNpArray = 255 * randomGaussianImage(scale = PRNU_FACTOR, size = IMAGE_SIZE_SHAPE)
|
||||
prnuNpArray = getPrnuShownAsSuch(IMAGE_SIZE_SHAPE, 255) * PRNU_FACTOR
|
||||
|
||||
m = IMAGE_SIZE_SHAPE[1]
|
||||
n = IMAGE_SIZE_SHAPE[0]
|
||||
def isIn256Range(x):
|
||||
return 0 <= x and x <= 255
|
||||
|
||||
imageWithoutPrnuNpArrayTiles = [imageWithoutPrnuNpArray[x : x + m, y : y + n] for x in range(0, imageWithoutPrnuNpArray.shape[0], m) for y in range(0, imageWithoutPrnuNpArray.shape[1], n)]
|
||||
for imageWithoutPrnuNpArrayTile in imageWithoutPrnuNpArrayTiles:
|
||||
#print(imageWithoutPrnuNpArrayTile.shape, tuple(IMAGE_SIZE_SHAPE[::-1]))
|
||||
#if imageWithoutPrnuNpArrayTile.shape != tuple(IMAGE_SIZE_SHAPE[::-1]):
|
||||
# continue
|
||||
imageNoise = randomGaussianImage(scale = 255 * NOISE_FACTOR, size = imageWithoutPrnuNpArrayTile.shape)
|
||||
imageWithPrnuNpArray = imageWithoutPrnuNpArrayTile + prnuNpArray + imageNoise
|
||||
#assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
|
||||
imageWithPrnuPil = toPilImage(imageWithPrnuNpArray)
|
||||
#imagePrnuEstimatePil = contextAdaptiveInterpolator(imageWithPrnuPil.load(), imageWithPrnuPil)
|
||||
#imagePrnuEstimateNpArray = np.array(imagePrnuEstimatePil)
|
||||
imagePrnuEstimateNpArray = imageWithPrnuNpArray - denoise_tv_chambolle(imageWithPrnuNpArray, weight=0.2, channel_axis=-1)
|
||||
imagesPrnuEstimateNpArray = []
|
||||
isFirstImage = True
|
||||
|
||||
imagesPrnuEstimateNpArray += [imagePrnuEstimateNpArray]
|
||||
for imageName in os.listdir(datasetPath):
|
||||
if imageName.endswith('.png'):
|
||||
imagePath = f'{datasetPath}/{imageName}'
|
||||
imageWithoutPrnuPil = Image.open(imagePath).convert('F')
|
||||
imageWithoutPrnuNpArray = np.array(imageWithoutPrnuPil)
|
||||
|
||||
cameraPrnuEstimateNpArray = np.array(imagesPrnuEstimateNpArray).mean(axis = 0)
|
||||
rms = rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray, True)
|
||||
title = f'Camera PRNU estimate\nRMS with actual one: {rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray):.4f} (normalized RMS: {rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray, True):.4f})'
|
||||
#showImageWithMatplotlib(cameraPrnuEstimateNpArray, title)
|
||||
m = IMAGE_SIZE_SHAPE[1]
|
||||
n = IMAGE_SIZE_SHAPE[0]
|
||||
|
||||
showImageWithMatplotlib(cameraPrnuEstimateNpArray, title, 'gray')
|
||||
imageWithoutPrnuNpArrayTiles = [imageWithoutPrnuNpArray[x : x + m, y : y + n] for x in range(0, imageWithoutPrnuNpArray.shape[0], m) for y in range(0, imageWithoutPrnuNpArray.shape[1], n)]
|
||||
for imageWithoutPrnuNpArrayTile in imageWithoutPrnuNpArrayTiles:
|
||||
#print(imageWithoutPrnuNpArrayTile.shape, tuple(IMAGE_SIZE_SHAPE[::-1]))
|
||||
#if imageWithoutPrnuNpArrayTile.shape != tuple(IMAGE_SIZE_SHAPE[::-1]):
|
||||
# continue
|
||||
imageNoise = randomGaussianImage(scale = 255 * NOISE_FACTOR, size = imageWithoutPrnuNpArrayTile.shape)
|
||||
imageWithPrnuNpArray = imageWithoutPrnuNpArrayTile + prnuNpArray + imageNoise
|
||||
|
||||
if splitNXNIndex == 0 and isFirstImage:
|
||||
axis = axes[0]
|
||||
|
||||
axis[0].set_title('First image without noise')
|
||||
axis[0].imshow(imageWithoutPrnuNpArrayTile)
|
||||
|
||||
axis[1].set_title('Actual Gaussian noised (G.n.) PRNU')
|
||||
axis[1].imshow(prnuNpArray)
|
||||
|
||||
axis[2].set_title('F. image with G.n.')
|
||||
axis[2].imshow(imageWithoutPrnuNpArray + imageNoise)
|
||||
|
||||
axis[3].set_title('F. image with G.n. and PRNU')
|
||||
axis[3].imshow(imageWithoutPrnuNpArray + prnuNpArray + imageNoise)
|
||||
isFirstImage = False
|
||||
|
||||
#assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
|
||||
imageWithPrnuPil = toPilImage(imageWithPrnuNpArray)
|
||||
#imagePrnuEstimatePil = contextAdaptiveInterpolator(imageWithPrnuPil.load(), imageWithPrnuPil)
|
||||
#imagePrnuEstimateNpArray = np.array(imagePrnuEstimatePil)
|
||||
imagePrnuEstimateNpArray = imageWithPrnuNpArray - denoise_tv_chambolle(imageWithPrnuNpArray, weight=0.2, channel_axis=-1)
|
||||
|
||||
imagesPrnuEstimateNpArray += [imagePrnuEstimateNpArray]
|
||||
|
||||
cameraPrnuEstimateNpArray = np.array(imagesPrnuEstimateNpArray).mean(axis = 0)
|
||||
rms = rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray, True)
|
||||
title = f'RMS with actual PRNU: {rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray):.4f}\n(normalized RMS: {rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray, True):.4f})'
|
||||
axis = axes[1]
|
||||
axis[splitNXNIndex].set_title(f'Number of images: {len(imagesPrnuEstimateNpArray)}\n{title}')
|
||||
axis[splitNXNIndex].imshow(cameraPrnuEstimateNpArray)
|
||||
|
||||
axes[1][3].axis('off')
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user