Split images in 4x4 to increase PRNU estimation accuracy
This commit is contained in:
parent
9b57d3441c
commit
f297060f42
@ -19,14 +19,14 @@ from skimage.restoration import denoise_tv_chambolle
|
||||
datasetPath = 'no_noise_images'
|
||||
# Note that contrarily to `datasets/fake/`, here we do not have images being Gaussian with `scale` `1` but actual images with pixel values between 0 and 255.
|
||||
# In addition to the range difference, note that the distribution in the first set of images was a Gaussian and here is very different and specific.
|
||||
PRNU_FACTOR = 0.1
|
||||
PRNU_FACTOR = 0.01
|
||||
IMAGE_SIZE_SHAPE = (469, 704)
|
||||
|
||||
np.random.seed(0)
|
||||
|
||||
#prnuNpArray = 255 * randomGaussianImage(scale = PRNU_FACTOR, size = IMAGE_SIZE_SHAPE)
|
||||
prnuPil = Image.open('prnu.png').convert('F')
|
||||
prnusNpArray = [np.array(prnuPil) * PRNU_FACTOR for PRNU_FACTOR in PRNU_FACTORS]
|
||||
prnuPil = Image.open('prnu_4x4.png').convert('F')
|
||||
prnuNpArray = np.array(prnuPil) * PRNU_FACTOR
|
||||
|
||||
def isIn256Range(x):
|
||||
return 0 <= x and x <= 255
|
||||
@ -39,14 +39,19 @@ for imageName in os.listdir(datasetPath):
|
||||
imageWithoutPrnuPil = Image.open(imagePath).convert('F')
|
||||
imageWithoutPrnuNpArray = np.array(imageWithoutPrnuPil)
|
||||
|
||||
imageWithPrnuNpArray = imageWithoutPrnuNpArray + prnuNpArray
|
||||
#assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
|
||||
imageWithPrnuPil = toPilImage(imageWithPrnuNpArray)
|
||||
#imagePrnuEstimatePil = contextAdaptiveInterpolator(imageWithPrnuPil.load(), imageWithPrnuPil)
|
||||
#imagePrnuEstimateNpArray = np.array(imagePrnuEstimatePil)
|
||||
imagePrnuEstimateNpArray = imageWithPrnuNpArray - denoise_tv_chambolle(imageWithPrnuNpArray, weight=0.2, channel_axis=-1)
|
||||
m = imageWithoutPrnuNpArray.shape[0] // 4
|
||||
n = imageWithoutPrnuNpArray.shape[1] // 4
|
||||
|
||||
imagesPrnuEstimateNpArray += [imagePrnuEstimateNpArray]
|
||||
imageWithoutPrnuNpArrayTiles = [imageWithoutPrnuNpArray[x : x + m, y : y + n] for x in range(0, imageWithoutPrnuNpArray.shape[0], m) for y in range(0, imageWithoutPrnuNpArray.shape[1], n)]
|
||||
for imageWithoutPrnuNpArrayTile in imageWithoutPrnuNpArrayTiles:
|
||||
imageWithPrnuNpArray = imageWithoutPrnuNpArrayTile + prnuNpArray
|
||||
#assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
|
||||
imageWithPrnuPil = toPilImage(imageWithPrnuNpArray)
|
||||
#imagePrnuEstimatePil = contextAdaptiveInterpolator(imageWithPrnuPil.load(), imageWithPrnuPil)
|
||||
#imagePrnuEstimateNpArray = np.array(imagePrnuEstimatePil)
|
||||
imagePrnuEstimateNpArray = imageWithPrnuNpArray - denoise_tv_chambolle(imageWithPrnuNpArray, weight=0.2, channel_axis=-1)
|
||||
|
||||
imagesPrnuEstimateNpArray += [imagePrnuEstimateNpArray]
|
||||
|
||||
showImageWithMatplotlib(np.array(imagesPrnuEstimateNpArray).mean(axis = 0))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user