Compare commits
	
		
			2 Commits
		
	
	
		
			90df8a7cb9
			...
			a8fa053687
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | a8fa053687 | ||
|  | 6251c487e2 | 
| @@ -33,35 +33,34 @@ if requiresRaiseFiltering: | ||||
|  | ||||
|     imagesFileNames = [imageFileName for imageFileName in tqdm(imagesFileNames, 'Filtering images') if files[imageFileName]['Device'] == 'Nikon D7000' and Image.open(f'{imagesFolderPath}/{imageFileName}').size == (4946, 3278)] | ||||
|  | ||||
| minGreen = 308#None | ||||
|  | ||||
| def treatImage(imageFileName): | ||||
|     global mean, numberOfImagesInMean | ||||
|     global mean, numberOfImagesInMean, minGreen | ||||
|     imageFilePath = f'{imagesFolderPath}/{imageFileName}' | ||||
|     if imageFileName.endswith('.NEF'): | ||||
|         imageFileName = 'ra2c888f8t.NEF' | ||||
|         imageFilePath = f'{imagesFolderPath}/{imageFileName}' | ||||
|         print(imageFilePath) | ||||
|         with rawpy.imread(imageFilePath) as raw: | ||||
|             colorDesc = raw.color_desc.decode('ascii') | ||||
|             assert colorDesc == 'RGBG' | ||||
|             assert np.array_equal(raw.raw_pattern, np.array([[3, 2], [0, 1]], dtype = np.uint8)) | ||||
|             assert np.array_equal(raw.raw_pattern, np.array([[0, 1], [3, 2]], dtype = np.uint8)) | ||||
|             rawImageVisible = raw.raw_image_visible.copy() | ||||
|             centerY = 2263 | ||||
|             centerX = 237 | ||||
|             RANGE = 5 | ||||
|             rawImageVisible = rawImageVisible.astype(np.float64) | ||||
|             rawImageVisibleShape = rawImageVisible.shape | ||||
|             for y in range(0, rawImageVisibleShape[0], 2): | ||||
|                 for x in range(0, rawImageVisibleShape[1], 2): | ||||
|                     rawImageVisible[y, x] *= -1 | ||||
|             print(rawImageVisible[centerY - RANGE:centerY + RANGE, centerX - RANGE:centerX + RANGE]) | ||||
|             #greenRawImageVisible = raw.rawImageVisible | ||||
|             greenRawImageVisible = rawImageVisible[1::2, ::2] | ||||
|             ''' | ||||
|             greenRawImageVisibleMin = greenRawImageVisible.min() | ||||
|             if minGreen is None or greenRawImageVisibleMin < minGreen: | ||||
|                 minGreen = greenRawImageVisibleMin | ||||
|                 print(minGreen) | ||||
|             ''' | ||||
|             imageNpArray = (greenRawImageVisible - minGreen) / (4908 - minGreen) | ||||
|             # Pay attention to range of values expected by the denoiser. | ||||
|             exit(1) | ||||
|             # Indeed if provide the thousands valued raw image, then the denoiser only returns values between 0 and 1 and making the difference between both look pointless. | ||||
|             #exit(1) | ||||
|     else: | ||||
|         imagePil = Image.open(imageFilePath) | ||||
|         imageNpArray = img_as_float(np.array(imagePil)) | ||||
|     # As the arguments differ from a denoiser to the other should use a match instead. | ||||
|     imageDenoisedNpArray = denoise(imageNpArray, channel_axis=-1, convert2ycbcr=True, rescale_sigma=True) | ||||
|     imageDenoisedNpArray = denoise(imageNpArray, rescale_sigma=True) | ||||
|     #print(imageNpArray, imageDenoisedNpArray) | ||||
|     imageNoiseNpArray = imageNpArray - imageDenoisedNpArray | ||||
|     if mean is None: | ||||
|         mean = imageNoiseNpArray | ||||
|   | ||||
		Reference in New Issue
	
	Block a user