Files
Robust_image_source_identif…/datasets/fake/generate_dataset.py

141 lines
5.9 KiB
Python

# Notes: https://gitea.lemnoslife.com/Benjamin_Loison/Robust_image_source_identification_on_modern_smartphones/issues/21
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image
import sys
sys.path.insert(0, '../../algorithms/distance/')
from rms_diff import rmsDiffPil, rmsDiffNumpy
sys.path.insert(0, '../../algorithms/context_adaptive_interpolator/')
from context_adaptive_interpolator import contextAdaptiveInterpolator
sys.path.insert(0, '../../algorithms/image_utils/')
from image_utils import showImageWithMatplotlib, randomGaussianImage, toPilImage
from tqdm import tqdm
IMAGE_SIZE = 64
NUMBER_OF_PHONES = 1#0
NUMBER_OF_IMAGES_PER_PHONE = 10_000
# Compared to images being 1.
PRNU_FACTOR = 0.1
IMAGE_SIZE_SHAPE = (IMAGE_SIZE, IMAGE_SIZE)
np.random.seed(0)
# Generate PRNUs and images of phones.
imagesWithoutPrnu = [[randomGaussianImage(scale = 1, size = IMAGE_SIZE_SHAPE) for _ in range(NUMBER_OF_IMAGES_PER_PHONE)] for phoneIndex in range(NUMBER_OF_PHONES)]
prnus = [randomGaussianImage(scale = PRNU_FACTOR, size = IMAGE_SIZE_SHAPE) for _ in range(NUMBER_OF_PHONES)]
imagesWithPrnu = [[imageWithoutPrnu + prnus[phoneIndex] for imageWithoutPrnu in imagesWithoutPrnu[phoneIndex]] for phoneIndex in range(NUMBER_OF_PHONES)]
allImages = np.max([np.max(imagesWithoutPrnu) + np.max(prnus) + np.max(imagesWithPrnu)])
def showImageWithPil(npArray):
npArray -= npArray.min()
npArray = (npArray / npArray.max()) * 255
Image.fromarray(npArray).show()
plt.title('RMS between actual PRNU and the mean of the first $N$ images with PRNU (i.e. estimated PRNU)')
plt.xlabel('$N$ first images with PRNU')
plt.ylabel('RMS')
plt.xscale('log')
rmss = []
mean = np.zeros(IMAGE_SIZE_SHAPE)
for imageIndex in range(NUMBER_OF_IMAGES_PER_PHONE):
mean = (mean * imageIndex + imagesWithPrnu[0][imageIndex]) / (imageIndex + 1)
rms = rmsDiffNumpy(mean, prnus[0])
rmss += [rms]
plt.plot(rmss)
plt.show()
##
NUMBER_OF_ROWS = 5
NUMBER_OF_COLUMNS = 3
fig, axes = plt.subplots(NUMBER_OF_ROWS, NUMBER_OF_COLUMNS)
fig.suptitle('Single PRNU estimation with images being Gaussian noise')
prnusPil = [toPilImage(prnu) for prnu in prnus]
MAIN_AXIS_ROW_INDEX = 1
mainAxis = axes[MAIN_AXIS_ROW_INDEX]
mainAxis[0].set_title('Actual PRNU')
mainAxis[0].imshow(prnus[0])
mainAxis[1].set_title('First image without PRNU')
mainAxis[1].imshow(imagesWithoutPrnu[0][0])
assert NUMBER_OF_IMAGES_PER_PHONE >= 10 ** (NUMBER_OF_ROWS - 1), 'Try to use more images than generated!'
for rowIndex, numberOfImages in enumerate([10 ** power for power in range(NUMBER_OF_ROWS)]):
imagesWithPrnuPil0Mean = np.array(imagesWithPrnu[0][:numberOfImages]).mean(axis = 0)
title = (f'Mean of first $N$ images with PRNU\ni.e. estimated PRNU\nRMS with actual PRNU\n\n' if rowIndex == 0 else '') + f'$N$ = {numberOfImages:,}, $RMS$ = {round(rmsDiffNumpy(imagesWithPrnuPil0Mean, prnus[0]), 4)}'
axes[rowIndex][2].set_title(title)
axes[rowIndex][2].imshow(imagesWithPrnuPil0Mean)
for columnIndex in range(NUMBER_OF_COLUMNS):
for axisIndex in range(NUMBER_OF_ROWS):
if axisIndex != MAIN_AXIS_ROW_INDEX:
axes[axisIndex][columnIndex].axis('off')
plt.tight_layout()
plt.show()
##
# Compute CAI of phone images.
caiImages = [[contextAdaptiveInterpolator(image.load(), image) for image in imagesWithPrnuPil[phoneIndex]] for phoneIndex in tqdm(range(NUMBER_OF_PHONES))]
#caiImages[0][0].show()
# Guess the phone by consider the one reaching the lowest RMS difference between the estimated PRNU and the actual one.
def getPhoneIndexByNearestPrnu(estimatedPrnu):
nearestPrnuRmsDiff = None
nearestPrnuPhoneIndex = None
for phoneIndex, prnu in enumerate(prnusPil):
prnuRmsDiff = rmsDiffPil(estimatedPrnu, prnu)
if nearestPrnuRmsDiff is None or prnuRmsDiff < nearestPrnuRmsDiff:
nearestPrnuRmsDiff = prnuRmsDiff
nearestPrnuPhoneIndex = phoneIndex
return nearestPrnuPhoneIndex
# Predict the phones based on the estimated PRNUs and compute each method accuracy.
# What about CAI on `phoneImagesMean`? See https://gitea.lemnoslife.com/Benjamin_Loison/Robust_image_source_identification_on_modern_smartphones/issues/9#issuecomment-1369.
correctGuessesByMeanImages = 0
correctGuessesByMeanCAIImages = 0
# Maybe make sense only because Gaussian images here.
correctGuessesByCAIImagesMean = 0
for phoneIndex in range(NUMBER_OF_PHONES):
phoneImages = imagesWithPrnuPil[phoneIndex]
phoneCaiImages = caiImages[phoneIndex]
phoneImagesMean = toPilImage(np.array(phoneImages).mean(axis = 0))
caiImagesMean = toPilImage(np.array(phoneCaiImages).mean(axis = 0))
caiOverPhoneImagesMean = contextAdaptiveInterpolator(phoneImagesMean.load(), phoneImagesMean)
phonePrnu = prnusPil[phoneIndex]
print('RMS diff with mean image =', rmsDiffPil(phoneImagesMean, phonePrnu))
print('RMS diff with mean CAI images =', rmsDiffPil(caiImagesMean, phonePrnu))
print('RMS diff with CAI images mean =', rmsDiffPil(caiOverPhoneImagesMean, phonePrnu))
guessedPhoneIndexByMeanImages = getPhoneIndexByNearestPrnu(phoneImagesMean)
guessedPhoneIndexByMeanCAIImages = getPhoneIndexByNearestPrnu(caiImagesMean)
guessedPhoneIndexByCAIImagesMean = getPhoneIndexByNearestPrnu(caiOverPhoneImagesMean)
print(f'Actual phone index {phoneIndex}, guessed phone index {guessedPhoneIndexByMeanImages} by mean images, {guessedPhoneIndexByMeanCAIImages} by mean CAI images and {guessedPhoneIndexByCAIImagesMean} by CAI images mean')
correctGuessesByMeanImages += 1 if phoneIndex == guessedPhoneIndexByMeanImages else 0
correctGuessesByMeanCAIImages += 1 if phoneIndex == guessedPhoneIndexByMeanCAIImages else 0
correctGuessesByCAIImagesMean += 1 if phoneIndex == guessedPhoneIndexByCAIImagesMean else 0
print(f'{correctGuessesByMeanImages / NUMBER_OF_PHONES=}')
print(f'{correctGuessesByMeanCAIImages / NUMBER_OF_PHONES=}')
print(f'{correctGuessesByCAIImagesMean / NUMBER_OF_PHONES=}')