Add PRNU_FACTOR 0.1 and 0.01 view on a single figure

This commit is contained in:
Benjamin Loison 2024-03-29 01:05:28 +01:00
parent dfe2540c02
commit 4382b3d649
Signed by: Benjamin_Loison
SSH Key Fingerprint: SHA256:BtnEgYTlHdOg1u+RmYcDE0mnfz1rhv5dSbQ2gyxW8B8
2 changed files with 35 additions and 11 deletions

View File

@ -6,6 +6,7 @@ from wiener_filter import wienerFilter
# Assume greyscale PIL image passed.
# What about other color channels? See #11.
# `THRESHOLD` seems to have been designed to assume 256 range based images.
def contextAdaptiveInterpolator(I, IImage, showProgress = False):
rImage = Image.new('L', (IImage.size[0] - 2, IImage.size[1] - 2))
r = rImage.load()

View File

@ -3,6 +3,7 @@
import os
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.insert(0, '../../algorithms/image_utils/')
@ -13,34 +14,56 @@ sys.path.insert(0, '../../algorithms/context_adaptive_interpolator/')
from context_adaptive_interpolator import contextAdaptiveInterpolator
from skimage.restoration import denoise_tv_chambolle
datasetPath = 'no_noise_images'
# Note that contrarily to `datasets/fake/`, here we do not have images being Gaussian with `scale` `1` but actual images with pixel values between 0 and 255.
# In addition to the range difference, note that the distribution in the first set of images was a Gaussian and here is very different and specific.
PRNU_FACTOR = 0.15
PRNU_FACTORS = [0.1, 0.01]
IMAGE_SIZE_SHAPE = (469, 704)
np.random.seed(0)
#prnuNpArray = 255 * randomGaussianImage(scale = PRNU_FACTOR, size = IMAGE_SIZE_SHAPE)
prnuPil = Image.open('prnu.png').convert('F')
prnuNpArray = np.array(prnuPil) * PRNU_FACTOR
prnusNpArray = [np.array(prnuPil) * PRNU_FACTOR for PRNU_FACTOR in PRNU_FACTORS]
def isIn256Range(x):
return 0 <= x and x <= 255
imagesPrnuEstimateNpArray = []
for imageName in os.listdir(datasetPath):
if imageName.endswith('.png'):
imagePath = f'{datasetPath}/{imageName}'
imageWithoutPrnuPil = Image.open(imagePath).convert('F')
imageWithoutPrnuNpArray = np.array(imageWithoutPrnuPil)
#showImageWithMatplotlib(imageWithoutPrnuNpArray)
imageWithPrnuNpArray = imageWithoutPrnuNpArray + prnuNpArray
showImageWithMatplotlib(imageWithPrnuNpArray)
break
assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
imageWithPrnuPil = toPilImage(imageWithPrnuNpArray)
imageWithPrnuCaiPil = contextAdaptiveInterpolator(imageWithPrnuPil.load(), imageWithPrnuPil)
imageWithPrnuCaiNpArray = np.array(imageWithPrnuCaiPil)
showImageWithMatplotlib(imageWithPrnuCaiNpArray)
fig, axes = plt.subplots(3, 2)
fig.suptitle('Single PRNU estimation from an image with PRNU')
axes[0][0].set_title('Actual PRNU')
axes[0][0].imshow(prnuNpArray)
axes[0][1].axis('off')
for prnuIndex, prnuNpArray in enumerate(prnusNpArray):
imageWithPrnuNpArray = imageWithoutPrnuNpArray + prnuNpArray
#assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
imageWithPrnuPil = toPilImage(imageWithPrnuNpArray)
#imagePrnuEstimatePil = contextAdaptiveInterpolator(imageWithPrnuPil.load(), imageWithPrnuPil)
#imagePrnuEstimateNpArray = np.array(imagePrnuEstimatePil)
imagePrnuEstimateNpArray = imageWithPrnuNpArray - denoise_tv_chambolle(imageWithPrnuNpArray, weight=0.2, channel_axis=-1)
axis = axes[prnuIndex + 1]
axis[0].set_title(f'Image with PRNU\nPRNU_FACTOR = {PRNU_FACTORS[prnuIndex]}')
axis[0].imshow(imageWithPrnuNpArray)
axis[1].set_title('PRNU estimate')
axis[1].imshow(imagePrnuEstimateNpArray)
break
imagesPrnuEstimateNpArray += [imagePrnuEstimateNpArray]
plt.tight_layout(pad = 0)
plt.show()