#72: Verify actual data type pointer

This commit is contained in:
Benjamin Loison 2024-05-13 16:10:11 +02:00
parent 50058d5d2e
commit 54178c1101
No known key found for this signature in database

View File

@ -32,7 +32,7 @@ for camera in IMAGES_CAMERAS_FOLDER:
random.shuffle(imagesCamerasFileNames[camera])
# Limit number of images per camera with the one having the less images.
minimumNumberOfImagesCameras = min([len(imagesCamerasFileNames[camera]) for camera in IMAGES_CAMERAS_FOLDER])
minimumNumberOfImagesCameras = 4#min([len(imagesCamerasFileNames[camera]) for camera in IMAGES_CAMERAS_FOLDER])
for camera in IMAGES_CAMERAS_FOLDER:
imagesCamerasFileNames[camera] = imagesCamerasFileNames[camera][:minimumNumberOfImagesCameras]
print(camera, imagesCamerasFileNames[camera])
@ -143,11 +143,11 @@ for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else
cameraIterativeMean.add(imagePrnuEstimateNpArray)
else:
# Still use `cameraIterativeMean` to simplify the implementation.
# TODO: cameraIterativeMean.mean = mean([image_training_j_camera - cameraIterativeMean.mean for j in range(l)])
cameraIterativeMean.mean = 42
cameraIterativeMean.mean = np.mean([cameraTrainingImage - mergeSingleColorChannelImagesAccordingToBayerFilter({color: cameraColorMeans[camera][color].mean for color in Color}) for cameraTrainingImage in [multipleColorsImage]], axis = 0)#[:cameraTrainingImageIndex + 1]])
print(f'{cameraIterativeMean.mean = }')
print(f'{camerasIterativeMean[camera].mean = }')
exit(1)
if cameraIterativeMean.mean[0, 0] != 0:
exit(1)
# If we are considering the last camera and (not `PREDICT_ONLY_ON_WHOLE_TRAINING_SET` or we are considering the last training image), then we proceeded an additional image for all cameras and we can predict the accuracy at this learning step.
if cameraIndex == numberOfCameras - 1 and (not PREDICT_ONLY_ON_WHOLE_TRAINING_SET or cameraTrainingImageIndex == numberOfTrainingImages - 1):
numberOfTrainingImagesAccuracy = 0