Make parallel production ready
This commit is contained in:
parent
0f394faa61
commit
b354f59ac5
@ -7,28 +7,43 @@ from PIL import Image
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from multiprocessing import Pool
|
||||
from threading import Lock
|
||||
|
||||
imagesFolderPath = 'tif'
|
||||
imagesFolderPath = 'flat-field'
|
||||
npArrayFilePath = 'mean.npy'
|
||||
|
||||
'''
|
||||
for imageFileName in tqdm(os.listdir(imagesFolderPath)):
|
||||
npArrayFilePath = f'mean.npy'
|
||||
if os.path.isfile(npArrayFilePath):
|
||||
continue
|
||||
mutex = Lock()
|
||||
mean = None#np.zeros((3264, 4928, 3))
|
||||
numberOfImagesInMean = 0
|
||||
|
||||
imagesFileNames = os.listdir(imagesFolderPath)
|
||||
|
||||
pbar = tqdm(total = len(imagesFileNames))
|
||||
|
||||
def treatImage(imageFileName):
|
||||
global mean, numberOfImagesInMean, pbar
|
||||
imageFilePath = f'{imagesFolderPath}/{imageFileName}'
|
||||
imagePil = Image.open(imageFilePath)
|
||||
imageNpArray = img_as_float(np.array(imagePil))
|
||||
print('Before mean computation')
|
||||
imageNoiseNpArray = imageNpArray - denoise_tv_chambolle(imageNpArray, weight=0.2, channel_axis=-1)
|
||||
with open(npArrayFilePath, 'wb') as f:
|
||||
np.save(f, imageNoiseNpArray)
|
||||
'''
|
||||
print('After mean computation')
|
||||
with mutex:
|
||||
print('Start mutex section')
|
||||
if mean is None:
|
||||
print('Inter A')
|
||||
mean = imageNoiseNpArray
|
||||
else:
|
||||
print('Inter B')
|
||||
mean = ((mean * numberOfImagesInMean) + imageNoiseNpArray) / (numberOfImagesInMean + 1)
|
||||
print('Intermediary 0')
|
||||
numberOfImagesInMean += 1
|
||||
print('Intermediary 1')
|
||||
pbar.update(numberOfImagesInMean)
|
||||
print('End mutex section')
|
||||
|
||||
import time
|
||||
with Pool(5) as p:
|
||||
p.map(treatImage, imagesFileNames)
|
||||
|
||||
def treatImage(imageFilePath):
|
||||
while True:
|
||||
print(imageFilePath)
|
||||
time.sleep(1)
|
||||
|
||||
with Pool(22) as p:
|
||||
p.map(treatImage, )
|
||||
with open(npArrayFilePath, 'wb') as f:
|
||||
np.save(f, mean)
|
||||
|
Loading…
x
Reference in New Issue
Block a user