Compare commits

3 Commits

Author SHA1 Message Date
b354f59ac5 Make parallel production ready 2024-04-03 19:15:21 +02:00
0f394faa61 Multicores prototype 2024-04-03 18:20:31 +02:00
faed1e33e8 #33: Add datasets/raise/extract_noise.py 2024-04-03 18:20:08 +02:00

49
datasets/raise/extract_noise.py Executable file
View File

@@ -0,0 +1,49 @@
#!/usr/bin/python3
from skimage.restoration import denoise_tv_chambolle
from skimage import img_as_float
import numpy as np
from PIL import Image
import os
from tqdm import tqdm
from multiprocessing import Pool
from threading import Lock
imagesFolderPath = 'flat-field'
npArrayFilePath = 'mean.npy'
mutex = Lock()
mean = None#np.zeros((3264, 4928, 3))
numberOfImagesInMean = 0
imagesFileNames = os.listdir(imagesFolderPath)
pbar = tqdm(total = len(imagesFileNames))
def treatImage(imageFileName):
global mean, numberOfImagesInMean, pbar
imageFilePath = f'{imagesFolderPath}/{imageFileName}'
imagePil = Image.open(imageFilePath)
imageNpArray = img_as_float(np.array(imagePil))
print('Before mean computation')
imageNoiseNpArray = imageNpArray - denoise_tv_chambolle(imageNpArray, weight=0.2, channel_axis=-1)
print('After mean computation')
with mutex:
print('Start mutex section')
if mean is None:
print('Inter A')
mean = imageNoiseNpArray
else:
print('Inter B')
mean = ((mean * numberOfImagesInMean) + imageNoiseNpArray) / (numberOfImagesInMean + 1)
print('Intermediary 0')
numberOfImagesInMean += 1
print('Intermediary 1')
pbar.update(numberOfImagesInMean)
print('End mutex section')
with Pool(5) as p:
p.map(treatImage, imagesFileNames)
with open(npArrayFilePath, 'wb') as f:
np.save(f, mean)