Compare commits
7 Commits
5e6702e007
...
36b17eb3cc
Author | SHA1 | Date | |
---|---|---|---|
|
36b17eb3cc | ||
|
fb0f78e069 | ||
|
86093a40c0 | ||
|
54178c1101 | ||
|
50058d5d2e | ||
|
dbfc2756b2 | ||
|
31704c6e78 |
@ -7,7 +7,6 @@ from utils import denoise, iterativeMean, getColorChannel, escapeFilePath, Color
|
||||
import sys
|
||||
import os
|
||||
import random
|
||||
import scipy
|
||||
|
||||
sys.path.insert(0, '../../algorithms/distance/')
|
||||
|
||||
@ -44,13 +43,14 @@ camerasIterativeMean = {camera: iterativeMean() for camera in IMAGES_CAMERAS_FOL
|
||||
# Compute the minimal color channel camera resolution.
|
||||
# Assume that for each camera, its images have the same resolution.
|
||||
# The following consider a given color channel resolution, assuming they all have the same resolution.
|
||||
minimalColorChannelCameraResolution = None
|
||||
for camera in IMAGES_CAMERAS_FOLDER:
|
||||
imageFileName = imagesCamerasFileNames[camera][0]
|
||||
imageFilePath = f'{IMAGES_CAMERAS_FOLDER[camera]}/{imageFileName}'
|
||||
singleColorChannelImagesShape = getColorChannel(imageFilePath, Color.RED).shape
|
||||
if minimalColorChannelCameraResolution is None or singleColorChannelImagesShape < minimalColorChannelCameraResolution:
|
||||
minimalColorChannelCameraResolution = singleColorChannelImagesShape
|
||||
minimalColorChannelCameraResolution = (100, 100)#None
|
||||
if minimalColorChannelCameraResolution is None:
|
||||
for camera in IMAGES_CAMERAS_FOLDER:
|
||||
imageFileName = imagesCamerasFileNames[camera][0]
|
||||
imageFilePath = f'{IMAGES_CAMERAS_FOLDER[camera]}/{imageFileName}'
|
||||
singleColorChannelImagesShape = getColorChannel(imageFilePath, Color.RED).shape
|
||||
if minimalColorChannelCameraResolution is None or singleColorChannelImagesShape < minimalColorChannelCameraResolution:
|
||||
minimalColorChannelCameraResolution = singleColorChannelImagesShape
|
||||
|
||||
minColor = 0#None
|
||||
maxColor = 7952#None
|
||||
@ -75,7 +75,18 @@ def getMultipleColorsImage(singleColorChannelImages):
|
||||
return multipleColorsImage
|
||||
|
||||
def getImagePrnuEstimateNpArray(singleColorChannelImages, multipleColorsImage, camera):
|
||||
singleColorChannelDenoisedImages = {color: denoise(singleColorChannelImages[color], DENOISER) if DENOISER != Denoiser.MEAN else cameraColorMeans[camera][color] for color in Color}
|
||||
singleColorChannelDenoisedImages = {}
|
||||
for color in Color:
|
||||
if DENOISER != Denoiser.MEAN:
|
||||
singleColorChannelDenoisedImage = denoise(singleColorChannelImages[color], DENOISER)
|
||||
else:
|
||||
cameraColorMean = cameraColorMeans[camera][color]
|
||||
if PREDICT_ONLY_ON_WHOLE_TRAINING_SET:
|
||||
singleColorChannelDenoisedImage = cameraColorMean
|
||||
else:
|
||||
cameraColorCurrentMean = cameraColorMean.mean
|
||||
singleColorChannelDenoisedImage = cameraColorCurrentMean
|
||||
singleColorChannelDenoisedImages[color] = singleColorChannelDenoisedImage
|
||||
multipleColorsDenoisedImage = mergeSingleColorChannelImagesAccordingToBayerFilter(singleColorChannelDenoisedImages)
|
||||
imagePrnuEstimateNpArray = multipleColorsImage - multipleColorsDenoisedImage
|
||||
return imagePrnuEstimateNpArray
|
||||
@ -85,13 +96,24 @@ imagesCamerasFilePaths = {camera: [f'{IMAGES_CAMERAS_FOLDER[camera]}/{imagesCame
|
||||
# If `PREDICT_ONLY_ON_WHOLE_TRAINING_SET`, then compute the means of camera images to empower the `MEAN` denoiser.
|
||||
# Otherwise initialize these means of camera images to `iterativeMean`.
|
||||
if DENOISER == Denoiser.MEAN:
|
||||
cameraColorMeans = {camera: (getColorMeans(imagesCamerasFilePaths[camera][:numberOfTrainingImages], Color, minimalColorChannelCameraResolution) if PREDICT_ONLY_ON_WHOLE_TRAINING_SET else iterativeMean()) for camera in imagesCamerasFilePaths}
|
||||
cameraColorMeans = {camera: (getColorMeans(imagesCamerasFilePaths[camera][:numberOfTrainingImages], Color, minimalColorChannelCameraResolution) if PREDICT_ONLY_ON_WHOLE_TRAINING_SET else {color: iterativeMean() for color in Color}) for camera in imagesCamerasFilePaths}
|
||||
|
||||
from utils import silentTqdm
|
||||
#tqdm = silentTqdm
|
||||
|
||||
returnSingleColorChannelImage = lambda singleColorChannelImage, _minColor, _maxColor: singleColorChannelImage
|
||||
|
||||
# Assume to have `{min,max}Color` hardcoded.
|
||||
print('Load training images to memory')
|
||||
rescaleIfNeeded = rescaleRawImageForDenoiser
|
||||
cameraTrainingImages = {}
|
||||
for cameraTrainingImageIndex in tqdm(range(numberOfTrainingImages), 'Camera training image index'):
|
||||
for cameraIndex, camera in enumerate(tqdm(IMAGES_CAMERAS_FOLDER, 'Camera')):
|
||||
singleColorChannelImages = getSingleColorChannelImages(camera, cameraTrainingImageIndex)
|
||||
multipleColorsImage = getMultipleColorsImage(singleColorChannelImages)
|
||||
cameraTrainingImages[camera] = cameraTrainingImages.get(camera, []) + [multipleColorsImage]
|
||||
print('Training images loaded to memory')
|
||||
|
||||
# 2 loops:
|
||||
# - the first one is about computing `{min,max}Color`
|
||||
# - the second one is about estimating better and better the PRNU of each camera, as consider more and more training images and measuring the resulting attribution of cameras
|
||||
@ -123,10 +145,17 @@ for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else
|
||||
minColor, maxColor = updateExtremes(multipleColorsImage, minColor, maxColor)
|
||||
continue
|
||||
|
||||
if DENOISER == Denoiser.MEAN:
|
||||
for color in Color:
|
||||
cameraColorMeans[camera][color].add(singleColorChannelImages[color])
|
||||
imagePrnuEstimateNpArray = getImagePrnuEstimateNpArray(singleColorChannelImages, multipleColorsImage, camera)
|
||||
|
||||
cameraIterativeMean = camerasIterativeMean[camera]
|
||||
cameraIterativeMean.add(imagePrnuEstimateNpArray)
|
||||
if DENOISER != Denoiser.MEAN or PREDICT_ONLY_ON_WHOLE_TRAINING_SET:
|
||||
cameraIterativeMean.add(imagePrnuEstimateNpArray)
|
||||
else:
|
||||
# Still use `cameraIterativeMean` to simplify the implementation.
|
||||
cameraIterativeMean.mean = np.mean([cameraTrainingImage - mergeSingleColorChannelImagesAccordingToBayerFilter({color: cameraColorMeans[camera][color].mean for color in Color}) for cameraTrainingImage in cameraTrainingImages[camera][:cameraTrainingImageIndex + 1]], axis = 0)
|
||||
# If we are considering the last camera and (not `PREDICT_ONLY_ON_WHOLE_TRAINING_SET` or we are considering the last training image), then we proceeded an additional image for all cameras and we can predict the accuracy at this learning step.
|
||||
if cameraIndex == numberOfCameras - 1 and (not PREDICT_ONLY_ON_WHOLE_TRAINING_SET or cameraTrainingImageIndex == numberOfTrainingImages - 1):
|
||||
numberOfTrainingImagesAccuracy = 0
|
||||
@ -139,8 +168,15 @@ for computeExtremes in tqdm(([True] if minColor is None or maxColor is None else
|
||||
#plt.imsave(f'{escapeFilePath(actualCamera)}_{cameraTestingImageIndex}.png', cameraTestingImagesNoise[actualCamera][cameraTestingImageIndex])
|
||||
# Loop over each camera to compute closeness between the considered testing image noise and the estimated PRNUs of the various cameras.
|
||||
for camera in IMAGES_CAMERAS_FOLDER:
|
||||
distance = abs(scipy.stats.pearsonr(cameraTestingImagesNoise[actualCamera][cameraTestingImageIndex].flatten(), camerasIterativeMean[camera].mean.flatten()).statistic - 1)
|
||||
print(f'{cameraTestingImageIndex=} {camera=} {actualCamera=} {distance=}')
|
||||
if DENOISER != Denoiser.MEAN:
|
||||
cameraTestingImageNoise = cameraTestingImagesNoise[actualCamera][cameraTestingImageIndex]
|
||||
else:
|
||||
singleColorChannelImages = getSingleColorChannelImages(camera, numberOfTrainingImages + cameraTestingImageIndex)
|
||||
multipleColorsImage = getMultipleColorsImage(singleColorChannelImages)
|
||||
cameraTestingImageNoise = getImagePrnuEstimateNpArray(singleColorChannelImages, multipleColorsImage, camera)
|
||||
|
||||
distance = rmsDiffNumpy(cameraTestingImageNoise, camerasIterativeMean[camera].mean)
|
||||
print(f'{cameraTrainingImageIndex=} {cameraTestingImageIndex=} {camera=} {actualCamera=} {distance=}')
|
||||
if minimalDistance is None or distance < minimalDistance:
|
||||
minimalDistance = distance
|
||||
cameraPredicted = camera
|
||||
|
41
datasets/raise/benchmark_load_part_of_images.py
Executable file
41
datasets/raise/benchmark_load_part_of_images.py
Executable file
@ -0,0 +1,41 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from utils import getColorChannel, Color
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
from enum import Enum, auto
|
||||
|
||||
IMAGES_CAMERAS_FOLDER = {
|
||||
'RAISE': 'flat-field/nef',
|
||||
'Rafael 23/04/24': 'rafael/230424',
|
||||
}
|
||||
|
||||
class Operation(Enum):
|
||||
LOAD_RAW = auto()
|
||||
SAVE = auto()
|
||||
LOAD_NPY = auto()
|
||||
|
||||
OPERATION = Operation.LOAD_RAW
|
||||
RESOLUTION = 100
|
||||
|
||||
for camera in tqdm(IMAGES_CAMERAS_FOLDER, 'Camera'):
|
||||
imagesCameraFolder = IMAGES_CAMERAS_FOLDER[camera]
|
||||
for file in tqdm(os.listdir(imagesCameraFolder), 'Image'):
|
||||
if file.endswith('.NEF'):
|
||||
#print(file)
|
||||
imageFilePath = f'{imagesCameraFolder}/{file}'
|
||||
numpyFilePath = f'{imageFilePath}.npy'
|
||||
for color in Color:
|
||||
if OPERATION in [Operation.LOAD_RAW, Operation.SAVE]:
|
||||
rawColorChannel = getColorChannel(imageFilePath, color)
|
||||
if OPERATION == Operation.SAVE:
|
||||
np.save(numpyFilePath, {color: rawColorChannel})
|
||||
if OPERATION == Operation.LOAD_NPY:
|
||||
rawColorChannel = np.load(numpyFilePath, allow_pickle = True)
|
||||
#print(type(rawColorChannel))
|
||||
#print(rawColorChannel)
|
||||
#print(rawColorChannel.shape)
|
||||
print(rawColorChannel.item()[color].mean())
|
||||
break
|
||||
break
|
Loading…
Reference in New Issue
Block a user