Compare commits
5 Commits
6f961a46cf
...
3a4100b779
Author | SHA1 | Date | |
---|---|---|---|
3a4100b779 | |||
98426db9dd | |||
d24c883a92 | |||
5bc0337dc8 | |||
9d20940cb1 |
@ -24,7 +24,7 @@ datasetPath = 'no_noise_images'
|
||||
# Note that contrarily to `datasets/fake/`, here we do not have images being Gaussian with `scale` `1` but actual images with pixel values between 0 and 255.
|
||||
# In addition to the range difference, note that the distribution in the first set of images was a Gaussian and here is very different and specific.
|
||||
PRNU_FACTOR = 0.01
|
||||
NOISE_FACTOR = 0.1
|
||||
NOISE_FACTOR = 0.2
|
||||
|
||||
np.random.seed(0)
|
||||
|
||||
@ -77,13 +77,13 @@ for splitNXNIndex, splitNXN in enumerate(SPLIT_N_X_N_S):
|
||||
axis[1].set_title('First image Gaussian noise')
|
||||
axisImShow(axis[1], imageNoise)
|
||||
|
||||
axis[2].set_title('First image with Gaussian noise')
|
||||
axis[2].set_title('First image with Gaussian noise\nClipped between 0 and 255')
|
||||
axisImShow(axis[2], np.clip(imageWithoutPrnuNpArray + imageNoise, 0, 255))
|
||||
|
||||
axis[3].set_title('Actual Gaussian noised PRNU')
|
||||
axisImShow(axis[3], prnuNpArray)
|
||||
axis[3].set_title('Actual Gaussian noised PRNU\nClipped between -1 and 1')
|
||||
axisImShow(axis[3], np.clip(prnuNpArray, -1, 1))
|
||||
|
||||
axes[1][0].set_title('First image with Gaussian noise and PRNU')
|
||||
axes[1][0].set_title('First image with Gaussian noise and PRNU\nClipped between 0 and 255')
|
||||
axisImShow(axes[1][0], np.clip(imageWithoutPrnuNpArray + prnuNpArray + imageNoise, 0, 255))
|
||||
isFirstImage = False
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user