Compare commits
29 Commits
prnu_writt
...
5fa61f7ff8
Author | SHA1 | Date | |
---|---|---|---|
5fa61f7ff8
|
|||
8351e46437
|
|||
2f66e82f22
|
|||
3ccec5bbd0
|
|||
f297060f42
|
|||
9b57d3441c
|
|||
d59a251b1f
|
|||
4382b3d649
|
|||
dfe2540c02
|
|||
9a3cfd7ba1
|
|||
ba5a1b742b
|
|||
a99e942d3a
|
|||
0953fb7475
|
|||
82e7026264
|
|||
70ccb094d5
|
|||
64eaeddf98
|
|||
18d34a3101
|
|||
cbc778c4dc
|
|||
5af7afaf75
|
|||
77d6c038fe
|
|||
69368a9057
|
|||
abfc9772e8
|
|||
d716574973
|
|||
2093f2e613
|
|||
9028d4d12c
|
|||
811b355989
|
|||
cfe718da7d
|
|||
2bc13c5949
|
|||
c2862eaf43
|
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1,2 +1,3 @@
|
||||
*.pdf
|
||||
*.xopp
|
||||
__pycache__
|
||||
|
@@ -6,6 +6,7 @@ from wiener_filter import wienerFilter
|
||||
|
||||
# Assume greyscale PIL image passed.
|
||||
# What about other color channels? See #11.
|
||||
# `THRESHOLD` seems to have been designed to assume 256 range based images.
|
||||
def contextAdaptiveInterpolator(I, IImage, showProgress = False):
|
||||
rImage = Image.new('L', (IImage.size[0] - 2, IImage.size[1] - 2))
|
||||
r = rImage.load()
|
||||
|
@@ -14,5 +14,13 @@ def rmsDiffPil(im1, im2):
|
||||
map(lambda h, i: h*(i**2), h, range(256))
|
||||
) / (float(im1.size[0]) * im1.size[1]))
|
||||
|
||||
def rmsDiffNumpy(image0, image1):
|
||||
def normalizeImage(image):
|
||||
image = image - image.min()
|
||||
image = image / image.max()
|
||||
return image
|
||||
|
||||
def rmsDiffNumpy(image0, image1, normalize = False):
|
||||
if normalize:
|
||||
image0 = normalizeImage(image0)
|
||||
image1 = normalizeImage(image1)
|
||||
return np.sqrt(np.mean(np.square(image0 - image1)))
|
15
algorithms/image_utils/image_utils.py
Normal file
15
algorithms/image_utils/image_utils.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
def randomGaussianImage(scale, size):
|
||||
return np.random.normal(loc = 0, scale = scale, size = size)
|
||||
|
||||
def showImageWithMatplotlib(npArray, title = None):
|
||||
if title is not None:
|
||||
plt.title(title)
|
||||
plt.imshow(npArray)
|
||||
plt.show()
|
||||
|
||||
def toPilImage(npArray):
|
||||
return Image.fromarray(npArray)
|
@@ -0,0 +1 @@
|
||||
https://en.wikipedia.org/w/index.php?title=Law_of_large_numbers&oldid=1214684685
|
@@ -0,0 +1,62 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
<xournal creator="Xournal++ 1.1.3" fileversion="4">
|
||||
<title>Xournal++ document - see https://github.com/xournalpp/xournalpp</title>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" domain="absolute" filename="/home/benjamin/Desktop/bens_folder/school/ens/asp/aria/internship/work/articles/Law of large numbers - Wikipedia/Law of large numbers - Wikipedia.pdf" pageno="1"/>
|
||||
<layer>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">172.79332005 455.71986902 176.74788473 461.64321741</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">176.74788473 461.64321741 185.60032684 446.31033791</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">551.70618022 154.14224043 556.89385206 161.24116676</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">557.16641469 161.24116676 565.35602737 142.40508790</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">380.32310272 214.79667307 115.27752645 382.17214760</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">54.81231868 100.23162958 121.10611350 100.23162958</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">44.94156833 77.24209718 229.25613510 77.24209718</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">241.87676723 99.25463731 255.19612112 99.25463731</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">282.25762979 100.01803628 364.60489826 100.01803628</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">67.07284300 111.51919777 366.62676024 111.51919777</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">43.00099023 124.14875416 357.10161952 124.14875416</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">186.66547704 136.27102646 365.04606404 136.27102646</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">44.06579223 149.49702205 286.77048459 149.49702205</stroke>
|
||||
</layer>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="2"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="3"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="4"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="5"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="6"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="7"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="8"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="9"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="10"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="11"/>
|
||||
<layer/>
|
||||
</page>
|
||||
</xournal>
|
@@ -0,0 +1 @@
|
||||
https://en.wikipedia.org/w/index.php?title=Shot_noise&oldid=1210973018
|
111
articles/Shot noise - Wikipedia/Shot noise - Wikipedia.xopp.xml
Normal file
111
articles/Shot noise - Wikipedia/Shot noise - Wikipedia.xopp.xml
Normal file
@@ -0,0 +1,111 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
<xournal creator="Xournal++ 1.1.3" fileversion="4">
|
||||
<title>Xournal++ document - see https://github.com/xournalpp/xournalpp</title>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" domain="absolute" filename="/home/benjamin/Desktop/bens_folder/school/ens/asp/aria/internship/work/articles/Shot noise - Wikipedia/Shot noise - Wikipedia.pdf" pageno="1"/>
|
||||
<layer>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">46.11154175 86.32046509 150.35152358 86.32046509</stroke>
|
||||
<stroke tool="highlighter" color="#ff00007f" width="8.50000000" fill="128">127.45324707 116.81433105 200.04861869 116.81433105</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">78.01306400 132.47647418 254.63864121 132.47647418</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">169.41341684 160.67209108 303.27056261 160.67209108</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">47.40466685 177.72969763 162.33560428 177.72969763</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">235.26941037 177.45813474 302.79955883 177.45813474</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">47.64915140 193.41002363 303.37602767 193.41002363</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">260.11489192 207.76653791 44.85486037 207.76653791</stroke>
|
||||
<text font="Sans" size="11.00000000" x="327.01944284" y="309.08399263" color="#00c0ffff" ts="0" fn="">so pixel or black?</text>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">328.65629476 277.60449072 502.30991623 277.60449072</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">519.69371999 291.55182641 330.19208155 291.55182641</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">326.95781155 305.28418629 524.57140525 305.28418629</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">67.09423681 269.80212503 168.61949049 269.80212503</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">215.60499276 270.06481466 307.72054223 270.06481466</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">67.99859807 285.73181932 106.17849107 285.73181932</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">211.27064832 284.39049036 281.11851124 284.39049036</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">189.00535807 306.61017621 301.13379781 306.61017621</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">47.56651777 322.75420432 199.59521732 322.75420432</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">289.46654265 364.52157976 392.58953849 364.52157976</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">424.26032361 365.22355284 547.10319361 365.22355284</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">47.01925345 381.43359155 548.32815761 381.43359155</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">45.66284913 397.20432388 202.52479214 397.20432388</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">44.36838564 424.34332408 169.17738859 424.34332408</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">282.64330743 426.96873001 546.79134851 426.96873001</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">48.50904320 441.01837181 80.50800279 441.01837181</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">207.55202066 439.18481794 246.98777059 441.61400340</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">301.21051378 449.25105599 323.03490551 449.25105599</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">434.06341346 448.50774316 476.11050162 448.50774316</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">425.87754889 512.42902313 552.42238033 512.42902313</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">44.67524665 529.10365815 550.78712902 529.10365815</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">44.76212201 544.86315560 511.52154545 544.86315560</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">526.29441305 538.25024176 552.02883643 538.25024176</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">44.88893849 555.01991461 174.03463657 555.01991461</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#000000ff" width="1.41000000" fill="255">290.63859190 588.55877883 314.74527387 588.55877883</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">46.50521225 625.64681904 444.64200883 625.64681904</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">303.56511346 640.27596237 549.47878566 640.27596237</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">537.92131225 656.01232516 46.38337531 656.01232516</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">53.45846243 679.71771951 492.32045636 679.71771951</stroke>
|
||||
<text font="Sans" size="11.00000000" x="362.81672248" y="683.55551806" color="#00c0ffff" ts="0" fn="">uniquement</text>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">47.10556707 716.64930841 200.39634201 716.64930841</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">211.03226270 723.63411941 410.12069510 723.63411941</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#ff00ffff" width="1.41000000" fill="255">420.20141693 724.59194949 448.96595043 724.59194949</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#000000ff" width="1.41000000" fill="255">453.45856103 723.28033562 552.49284040 723.28033562</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#000000ff" width="1.41000000" fill="255">45.32520687 741.83387670 552.40812386 741.83387670</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#000000ff" width="1.41000000" fill="255">45.14761566 757.00280973 152.41913671 757.00280973</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">166.53777136 749.27954670 551.05563429 749.27954670</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">45.46027753 765.43685030 175.30696655 765.43685030</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">185.83120895 771.31310054 420.29842273 771.31310054</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">450.78131420 764.48388103 552.05132785 764.48388103</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">46.86073859 782.32056856 549.40004325 782.32056856</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">46.17630567 799.83536558 326.61443210 799.83536558</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">430.34159877 799.99744579 549.45598233 799.99744579</stroke>
|
||||
<text font="Sans" size="11.00000000" x="173.37040718" y="82.43216394" color="#00c0ffff" ts="0" fn="">example of generating Poisson noise?</text>
|
||||
</layer>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="2"/>
|
||||
<layer>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">46.94473645 83.82312021 159.02826360 83.82312021</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">47.74493440 106.39993738 358.84150350 106.39993738</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">46.24946990 123.26490028 95.03541660 123.26490028</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">46.03968734 155.13559251 358.58354595 155.13559251</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">45.89209782 171.99810209 136.50406601 171.99810209</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">74.95227243 225.57011697 74.95227243 250.76211403 174.99590959 250.76211403 174.99590959 225.57011697 74.95227243 225.57011697</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">197.37577259 169.44888693 360.89557240 169.44888693</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">90.40439299 187.31985228 339.71317253 187.31985228</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">45.29636306 203.96312138 139.23525650 203.96312138</stroke>
|
||||
<text font="Sans" size="11.00000000" x="234.92328463" y="307.76575248" color="#00c0ffff" ts="0" fn="">?</text>
|
||||
<stroke tool="pen" ts="0" fn="" color="#000000ff" width="1.41000000" fill="255">43.17994265 282.56787329 364.59659633 282.56787329</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">271.53114875 307.49055445 544.33799740 307.49055445</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">44.52646486 323.36324897 352.40420412 323.36324897</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">538.36492915 324.74195106 549.51146455 324.74195106</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">45.77901541 340.83512419 195.69395184 340.83512419</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">412.31054798 212.41133165 497.78366914 212.41133165</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">387.33932759 225.38077500 427.05427198 225.38077500</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">446.25494518 239.20996112 525.06844193 239.20996112</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">390.43487847 254.31210398 439.48051735 254.31210398</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">385.76075943 268.18013066 502.37680488 268.18013066</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">521.55384777 87.17784122 521.55384777 106.33948689 539.06360056 106.33948689 539.06360056 87.17784122 521.55384777 87.17784122</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">44.55310756 45.16262224 371.62378483 45.16262224</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">388.15745548 46.29871990 395.75530066 52.90615388</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">395.75530066 52.90615388 407.90469014 27.90090789</stroke>
|
||||
</layer>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="3"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="4"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="5"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="6"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="7"/>
|
||||
<layer/>
|
||||
</page>
|
||||
</xournal>
|
@@ -21,6 +21,12 @@
|
||||
<stroke tool="highlighter" color="#ff00007f" width="8.50000000" fill="128">78.66667086 411.37732832 172.83413256 411.37732832</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">182.94980638 411.63570950 294.96144099 411.63570950</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">78.08589681 419.59506323 154.70364562 419.59506323</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">201.73046875 190.98156738 295.14835752 190.98156738</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">77.83660889 203.19790649 95.32058716 202.45193481</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">103.98278809 201.52066040 298.68438360 201.52066040</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">78.63943481 212.82376099 103.41469363 212.82376099</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">154.10906982 212.40234375 294.61920570 212.40234375</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">79.34304810 223.27105713 254.63002133 223.27105713</stroke>
|
||||
</layer>
|
||||
</page>
|
||||
<page width="612.00000000" height="792.00000000">
|
||||
|
@@ -1,3 +1,5 @@
|
||||
# Notes: https://gitea.lemnoslife.com/Benjamin_Loison/Robust_image_source_identification_on_modern_smartphones/issues/21
|
||||
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
from PIL import Image
|
||||
@@ -10,6 +12,10 @@ from rms_diff import rmsDiffPil, rmsDiffNumpy
|
||||
sys.path.insert(0, '../../algorithms/context_adaptive_interpolator/')
|
||||
|
||||
from context_adaptive_interpolator import contextAdaptiveInterpolator
|
||||
|
||||
sys.path.insert(0, '../../algorithms/image_utils/')
|
||||
|
||||
from image_utils import showImageWithMatplotlib, randomGaussianImage, toPilImage
|
||||
from tqdm import tqdm
|
||||
|
||||
IMAGE_SIZE = 64
|
||||
@@ -18,30 +24,38 @@ NUMBER_OF_IMAGES_PER_PHONE = 10_000
|
||||
# Compared to images being 1.
|
||||
PRNU_FACTOR = 0.1
|
||||
|
||||
IMAGE_SIZE_SHAPE = (IMAGE_SIZE, IMAGE_SIZE)
|
||||
|
||||
np.random.seed(0)
|
||||
|
||||
# Generate PRNUs and images of phones.
|
||||
# Is such `np.maximum` probabilistically correct with our theoretical method? See #19.
|
||||
def randomImage(scale):
|
||||
return np.random.normal(loc = 0, scale = scale, size = (IMAGE_SIZE, IMAGE_SIZE))
|
||||
imagesWithoutPrnu = [[randomGaussianImage(scale = 1, size = IMAGE_SIZE_SHAPE) for _ in range(NUMBER_OF_IMAGES_PER_PHONE)] for phoneIndex in range(NUMBER_OF_PHONES)]
|
||||
|
||||
imagesWithoutPrnu = [[randomImage(scale = 1) for _ in range(NUMBER_OF_IMAGES_PER_PHONE)] for phoneIndex in range(NUMBER_OF_PHONES)]
|
||||
|
||||
prnus = [np.array(Image.open('prnu.png').convert('F')) * PRNU_FACTOR / 255]
|
||||
prnus = [randomGaussianImage(scale = PRNU_FACTOR, size = IMAGE_SIZE_SHAPE) for _ in range(NUMBER_OF_PHONES)]
|
||||
|
||||
imagesWithPrnu = [[imageWithoutPrnu + prnus[phoneIndex] for imageWithoutPrnu in imagesWithoutPrnu[phoneIndex]] for phoneIndex in range(NUMBER_OF_PHONES)]
|
||||
|
||||
allImages = np.max([np.max(imagesWithoutPrnu) + np.max(prnus) + np.max(imagesWithPrnu)])
|
||||
|
||||
def toPilImage(npArray):
|
||||
return Image.fromarray(npArray)
|
||||
|
||||
def showImageWithPil(npArray):
|
||||
npArray -= npArray.min()
|
||||
npArray = (npArray / npArray.max()) * 255
|
||||
Image.fromarray(npArray).show()
|
||||
|
||||
def showImageWithMatplotlib(npArray):
|
||||
plt.imshow(npArray)
|
||||
plt.show()
|
||||
plt.title('RMS between actual PRNU and the mean of the first $N$ images with PRNU (i.e. estimated PRNU)')
|
||||
plt.xlabel('$N$ first images with PRNU')
|
||||
plt.ylabel('RMS')
|
||||
plt.xscale('log')
|
||||
rmss = []
|
||||
mean = np.zeros(IMAGE_SIZE_SHAPE)
|
||||
for imageIndex in range(NUMBER_OF_IMAGES_PER_PHONE):
|
||||
mean = (mean * imageIndex + imagesWithPrnu[0][imageIndex]) / (imageIndex + 1)
|
||||
rms = rmsDiffNumpy(mean, prnus[0])
|
||||
rmss += [rms]
|
||||
plt.plot(rmss)
|
||||
plt.show()
|
||||
|
||||
##
|
||||
|
||||
NUMBER_OF_ROWS = 5
|
||||
NUMBER_OF_COLUMNS = 3
|
||||
@@ -75,23 +89,6 @@ plt.show()
|
||||
|
||||
##
|
||||
|
||||
def toFileName(title):
|
||||
return title.lower().replace(' ', '_').replace(',', '_')
|
||||
|
||||
for title, image in zip(['Actual PRNU', 'First image without PRNU'], [prnus[0], imagesWithoutPrnu[0][0]]):
|
||||
plt.title(title)
|
||||
plt.imshow(image)
|
||||
plt.savefig(title.lower().replace(' ', '_') + '.svg')
|
||||
|
||||
for numberOfImages in [10 ** power for power in range(NUMBER_OF_ROWS)]:
|
||||
title = 'First image with PRNU' if numberOfImages == 1 else f'Mean of first {numberOfImages:,} images with PRNU'
|
||||
image = np.array(imagesWithPrnu[0][:numberOfImages]).mean(axis = 0)
|
||||
plt.title(f'{title}\ni.e. estimated PRNU\nRMS with actual PRNU = {round(rmsDiffNumpy(image, prnus[0]), 4)}')
|
||||
plt.imshow(image)
|
||||
plt.savefig(f'{toFileName(title)}.svg')
|
||||
|
||||
##
|
||||
|
||||
# Compute CAI of phone images.
|
||||
caiImages = [[contextAdaptiveInterpolator(image.load(), image) for image in imagesWithPrnuPil[phoneIndex]] for phoneIndex in tqdm(range(NUMBER_OF_PHONES))]
|
||||
#caiImages[0][0].show()
|
||||
|
66
datasets/noise_free_test_images/estimate_prnu.py
Normal file
66
datasets/noise_free_test_images/estimate_prnu.py
Normal file
@@ -0,0 +1,66 @@
|
||||
# Notes: https://gitea.lemnoslife.com/Benjamin_Loison/Robust_image_source_identification_on_modern_smartphones/issues/25
|
||||
|
||||
import os
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import sys
|
||||
|
||||
sys.path.insert(0, '../../algorithms/image_utils/')
|
||||
|
||||
from image_utils import showImageWithMatplotlib, randomGaussianImage, toPilImage
|
||||
|
||||
sys.path.insert(0, '../../algorithms/context_adaptive_interpolator/')
|
||||
|
||||
from context_adaptive_interpolator import contextAdaptiveInterpolator
|
||||
|
||||
sys.path.insert(0, '../../algorithms/distance/')
|
||||
|
||||
from rms_diff import rmsDiffNumpy
|
||||
|
||||
from skimage.restoration import denoise_tv_chambolle
|
||||
|
||||
datasetPath = 'no_noise_images'
|
||||
# Note that contrarily to `datasets/fake/`, here we do not have images being Gaussian with `scale` `1` but actual images with pixel values between 0 and 255.
|
||||
# In addition to the range difference, note that the distribution in the first set of images was a Gaussian and here is very different and specific.
|
||||
PRNU_FACTOR = 0.01
|
||||
NOISE_FACTOR = 0.1
|
||||
IMAGE_SIZE_SHAPE = (469, 704)
|
||||
IMAGE_SIZE_SHAPE_4x4 = [size // 4 for size in IMAGE_SIZE_SHAPE]
|
||||
|
||||
np.random.seed(0)
|
||||
|
||||
#prnuNpArray = 255 * randomGaussianImage(scale = PRNU_FACTOR, size = IMAGE_SIZE_SHAPE)
|
||||
prnuPil = Image.open('prnu_4x4_noise.png').convert('F')
|
||||
prnuNpArray = np.array(prnuPil) * PRNU_FACTOR
|
||||
|
||||
def isIn256Range(x):
|
||||
return 0 <= x and x <= 255
|
||||
|
||||
imagesPrnuEstimateNpArray = []
|
||||
|
||||
for imageName in os.listdir(datasetPath):
|
||||
if imageName.endswith('.png'):
|
||||
imagePath = f'{datasetPath}/{imageName}'
|
||||
imageWithoutPrnuPil = Image.open(imagePath).convert('F')
|
||||
imageWithoutPrnuNpArray = np.array(imageWithoutPrnuPil)
|
||||
|
||||
m = imageWithoutPrnuNpArray.shape[0] // 4
|
||||
n = imageWithoutPrnuNpArray.shape[1] // 4
|
||||
|
||||
imageWithoutPrnuNpArrayTiles = [imageWithoutPrnuNpArray[x : x + m, y : y + n] for x in range(0, imageWithoutPrnuNpArray.shape[0], m) for y in range(0, imageWithoutPrnuNpArray.shape[1], n)]
|
||||
for imageWithoutPrnuNpArrayTile in imageWithoutPrnuNpArrayTiles:
|
||||
imageNoise = randomGaussianImage(scale = 255 * NOISE_FACTOR, size = imageWithoutPrnuNpArrayTile.shape)
|
||||
imageWithPrnuNpArray = imageWithoutPrnuNpArrayTile + prnuNpArray + imageNoise
|
||||
#assert all([isIn256Range(extreme) for extreme in [imageWithPrnuNpArray.max(), imageWithPrnuNpArray.min()]]), 'Adding the PRNU resulted in out of 256 bounds image'
|
||||
imageWithPrnuPil = toPilImage(imageWithPrnuNpArray)
|
||||
#imagePrnuEstimatePil = contextAdaptiveInterpolator(imageWithPrnuPil.load(), imageWithPrnuPil)
|
||||
#imagePrnuEstimateNpArray = np.array(imagePrnuEstimatePil)
|
||||
imagePrnuEstimateNpArray = imageWithPrnuNpArray - denoise_tv_chambolle(imageWithPrnuNpArray, weight=0.2, channel_axis=-1)
|
||||
|
||||
imagesPrnuEstimateNpArray += [imagePrnuEstimateNpArray]
|
||||
|
||||
cameraPrnuEstimateNpArray = np.array(imagesPrnuEstimateNpArray).mean(axis = 0)
|
||||
rms = rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray, True)
|
||||
showImageWithMatplotlib(cameraPrnuEstimateNpArray, f'Camera PRNU estimate\nRMS with actual one: {rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray):.4f} (normalized RMS: {rmsDiffNumpy(cameraPrnuEstimateNpArray, prnuNpArray, True):.4f})')
|
||||
|
1
datasets/noise_free_test_images/no_noise_images.zip.txt
Normal file
1
datasets/noise_free_test_images/no_noise_images.zip.txt
Normal file
@@ -0,0 +1 @@
|
||||
https://web.archive.org/web/20220121204219/https://mcolom.perso.math.cnrs.fr/download/no_noise_images/no_noise_images.zip
|
@@ -0,0 +1 @@
|
||||
https://web.archive.org/web/20221230200626/https://mcolom.perso.math.cnrs.fr/pages/no_noise_images/
|
@@ -0,0 +1,39 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
<xournal creator="Xournal++ 1.1.3" fileversion="4">
|
||||
<title>Xournal++ document - see https://github.com/xournalpp/xournalpp</title>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" domain="absolute" filename="/home/benjamin/Desktop/bens_folder/school/ens/asp/aria/internship/work/datasets/noise_free_test_images/webpage/noise_free_test_images.pdf" pageno="1"/>
|
||||
<layer>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">44.16991935 149.86110719 276.63410082 149.86110719</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">280.30546835 143.78018970 541.08492691 143.78018970</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">42.96677014 154.05265871 198.56628848 154.05265871</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">233.93128450 170.94835013 492.23933025 170.94835013</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">42.99659414 184.92242482 112.65886477 184.92242482</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">149.16792941 183.91166246 216.17115865 183.91166246</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">294.03605816 184.15454202 354.65329212 184.15454202</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">378.27254366 184.83142695 394.34985957 184.14821152</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">85.58659829 199.62412937 411.27805159 199.62412937</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">418.29380004 200.39743471 541.57682036 200.39743471</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">44.73424234 213.56413029 69.64328426 213.56413029</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">112.38907743 213.70955538 483.94315603 213.70955538</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">44.49702491 230.38688218 98.83166378 230.38688218</stroke>
|
||||
<stroke tool="pen" ts="0" fn="" color="#00c0ffff" width="1.41000000" fill="255">155.44600053 263.30094771 311.89079733 263.30094771</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">370.62786512 257.40568303 547.67625847 257.40568303</stroke>
|
||||
<stroke tool="highlighter" color="#00c0ff7f" width="8.50000000" fill="128">44.88887314 272.09091817 331.36022445 272.09091817</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">350.89020532 268.80336793 450.39163443 268.80336793</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">44.93306058 287.15898498 351.10131254 287.15898498</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">45.27054464 307.01382219 263.17418553 307.01382219</stroke>
|
||||
<stroke tool="highlighter" color="#ffff007f" width="8.50000000" fill="128">93.80213209 345.70257013 454.50227983 345.70257013</stroke>
|
||||
<text font="Sans" size="11.00000000" x="45.82731792" y="353.90876455" color="#00c0ffff" ts="0" fn="">legends not matching actual webpage web-browser rendering</text>
|
||||
<text font="Sans" size="11.00000000" x="48.63067627" y="32.63059998" color="#00c0ffff" ts="0" fn="">Almost identical content as `no_noise_images.zip/readme.txt`.</text>
|
||||
</layer>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="2"/>
|
||||
<layer/>
|
||||
</page>
|
||||
<page width="596.00000000" height="842.00000000">
|
||||
<background type="pdf" pageno="3"/>
|
||||
<layer/>
|
||||
</page>
|
||||
</xournal>
|
Reference in New Issue
Block a user